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Nonlinear Coch3. Nonlinear Cochlear Signal Processing and Masking
in Speech Perception

There are many classes of masking, but two major
classes are easily defined: neural masking and dy-
namic masking. Neural masking characterizes the
internal noise associated with the neural repre-
sentation of the auditory signal, a form of loudness
noise. Dynamic masking is strictly cochlear, and is
associated with cochlear outer-hair-cell process-
ing. This form is responsible for dynamic nonlinear
cochlear gain changes associated with sensorineu-
ral hearing loss, the upward spread of masking,
two-tone suppression and forward masking. The
impact of these various forms of masking are criti-
cal to our understanding of speech and music pro-
cessing. In this review, the details of what we know
about nonlinear cochlear and basilar membrane
signal processing is reviewed, and the implications
of neural masking is modeled, with a comprehen-
sive historical review of the masking literature.
This review is appropriate for a series of graduate
lectures on nonlinear cochlear speech and music
processing, from an auditory point of view.
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3.1 Basics

Auditory masking is critical to our understanding of
speech and music processing. There are many classes
of masking, but two major classes are easily defined.
These two types of masking and their relation to nonlin-
ear (NL) speech processing and coding are the focus of
this chapter.

The first class of masking, denoted neural mask-
ing, is due to internal neural noise, characterized in
terms of the intensity just noticeable difference, denoted
∆I(I, f, T ) (abbreviated JNDI) and defined as the just
discriminable change in intensity. The JNDI is a func-
tion of intensity I , frequency f and stimulus type T (e.g.,
noise, tones, speech, music, etc.). As an internal noise,
the JNDI may be modeled in terms of a loudness (i. e.,
perceptual intensity) noise density along the length of
the cochlea (0 ≤ X ≤ L), described in terms of a partial
loudness JND (∆L(X, T ), a.k.a. JNDL). The cochlea or

inner ear is the organ that converts signals from acous-
tical to neural signals. The loudness JND is a function
of the partial loudness L(X), defined as the loudness
contribution coming from each cochlear critical band,
or more generally, along some tonotopic central audi-
tory representation. The critical band is a measure of
cochlear bandwidth at a given cochlear place X. The
loudness JND plays a major role in speech and music
coding since coding quantization noise may be masked
by this internal quantization (i. e., loudness noise).

The second masking class, denoted here as dy-
namic masking, comes from the NL mechanical action
of cochlear outer-hair-cell (OHC) signal processing. It
can have two forms, simultaneous and nonsimultane-
ous, also known as forward masking, or post-masking.
Dynamic-masking (i. e., nonlinear OHC signal process-
ing) is well known (i. e., there is a historical literature
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on this topic) to be intimately related to questions
of cochlear frequency selectivity, sensitivity, dynamic
range compression and loudness recruitment (the loss
of loudness dynamic range). Dynamic masking includes
the upward spread of masking (USM) effect, or in neu-
ral processing parlance, two-tone suppression (2TS). It
may be underappreciated that NL OHC processing (i. e.,
dynamic masking) is largely responsible for forward
masking (FM, or post-stimulus masking), which shows
large effects over long time scales. For example OHC
effects (FM/USM/2TS) can be as large as 50 dB, with an
FM latency (return to base line) of up to 200 ms. Forward
masking (FM) and NL OHC signal onset enhancement
are important to the detection and identification of per-
ceptual features of a speech signal. Some research has
concluded that forward masking is not related to OHC
processing [3.1, 2], so the topic remains controversial.
Understanding and modeling NL OHC processing is key
to many speech processing applications. As a result, a vi-
brant research effort driven by the National Institute of
Health on OHC biophysics has ensued.

This OHC research effort is paying off at the high-
est level. Three key examples are notable. First is the
development of wide dynamic-range multiband com-
pression (WDRC) hearing aids. In the last 10–15 years
WDRC signal processing (first proposed in 1937 by
researchers at Bell Labs [3.3]), revolutionized the
hearing-aid industry. With the introduction of compres-
sion signal processing, hearing aids now address the
recruitment problem, thereby providing speech audibil-
ity over a much larger dynamic range, at least in quiet.
The problems of the impaired ear given speech in noise
is poorly understood today, but this problem is likely
related to the effects of NL OHC processing. This pow-
erful circuit (WDRC) is not the only reason hearing aids
of today are better. Improved electronics and transducers
have made significant strides as well. In the last few years
the digital barrier has finally been broken, with digital
signal processing hearing aids now becoming common.

A second example is the development of otoacoustic
emissions (OAE) as a hearing diagnostic tool. Pioneered
by David Kemp and Duck Kim, and then developed by
many others, this tool allows for cochlear evaluation of
neonates. The identification of cochlear hearing loss in
the first month has dramatically improves the lives of
these children (and their parents). While it is tragic to
be born deaf, it is much more tragic for the deafness to
go unrecognized until the child is three years old, when
they fail to learn to talk. If you cannot hear you do not
learn to talk. With proper and early cochlear implant
intervention, these kids can lead nearly normal-hearing

lives and even talk on the phone. However they cannot
understand speech in noise. It is at least possible that
this loss is due to the lack of NL OHC processing.

A third example of the application of NL OHC pro-
cessing to speech processing is still an underdeveloped
application area. The key open problem here is: How
does the auditory system, including the NL cochlea, fol-
lowed by the auditory cortex, processes human speech?
There are many aspects of this problem including speech
coding, speech recognition in noise, hearing aids and
language learning and reading disorders in children. If
we can solve the robust phone decoding problem, we
will fundamentally change the effectiveness of human-
machine interactions. For example, the ultimate hearing
aid is the hearing aid with built in robust speech feature
detection and phone recognition. While we have no idea
when this will come to be, and it is undoubtedly many
years off, when it happens there will be a technology
revolution that will change human communications.

In this chapter several topics will be reviewed. First
is the history of cochlear models including extensions
that have taken place in recent years. These models in-
clude both macromechanics and micromechanics of the
tectorial membrane and hair cells. This leads to com-
parisons of the basilar membrane, hair cell, and neural
frequency tuning. Hearing loss, loudness recruitment, as
well as other key topics of modern hearing health care,
are discussed. The role of NL mechanics and dynamic
range are reviewed to help the reader understand the
importance of modern wideband dynamic range com-
pression hearing aids as well as the overall impact of
NL OHC processing.

Any reader desiring further knowledge about
cochlear anatomy and function or a basic description
of hearing, they may consult Pickles [3.4], Dallos [3.5],
Yost [3.6].

3.1.1 Function of the Inner Ear

The goal of cochlear modeling is to refine our under-
standing of how auditory signals are processed. The
two main roles of the cochlea are to separate the input
acoustic signal into overlapping frequency bands, and
to compress the large acoustic intensity range into the
much smaller mechanical and electrical dynamic range
of the inner hair cell. This is a basic question of infor-
mation processing by the ear. The eye plays a similar
role as a peripheral organ. It breaks the light image into
rod- and cone-sized pixels, as it compresses the dynamic
range of the visual signal. Based on the intensity JND,
the corresponding visual dynamic range is about nine to
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Fig. 3.1a,b On the left we see all the major structures of the cochlea (a). The three chambers are filled with fluid. Reissner’s
membrane is an electrical barrier and is not believed to play a mechanical role. The right panel (b) shows the inner and
outer hair cells, pillar cells and other supporting structures, the basilar membrane (BM), and the tectorial membrane (TM)
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ten orders of magnitude of intensity [3.7, 8], while the
ear has about 11 to 12. The stimulus has a relatively high
information rate. Neurons are low-bandwidth channels.
The eye and the ear must cope with this problem by re-
ducing the stimulus to a large number of low bandwidth
signals. It is then the job of the cortex to piece these
pixel signals back together, to reconstruct the world as
we see and hear it.

The acoustic information coding starts in the cochlea
(Fig. 3.1a) which is composed of three major chambers
formed by Reissner’s membrane and the basilar mem-
brane (BM). Mechanically speaking, there are only two
chambers, as Reissner’s membrane is only for electrical
isolation of the scala media (SM) [3.4, 5]. Figure 3.1b
shows a blown-up view of the organ of Corti where the
inner hair cells (IHC) and outer hair cells (OHC) sit be-
tween the BM and the tectorial membrane (TM). As the
BM moves up and down, the TM shears against the retic-
ular lamina (RL), causing the cilia of the inner and outer
hair cells to bend. The afferent auditory nerve fibers that
are connected to the inner hair cells carry the signal
information into the auditory system. Many fewer effer-
ent fibers bring signals from the auditory system to the
base of the outer hair cells. The exact purpose of these
efferent fibers remains unknown.

Inner Hair Cells
In very general terms, the role of the cochlea is to con-
vert sound at the eardrum into neural pulse patterns
along approximately 30 000 neurons of the human audi-
tory (VIIIth) nerve. After being filtered by the cochlea,
a low-level pure tone has a narrow spread of excita-
tion which excites the cilia of about 40 contiguous
inner hair cells [3.5, 9, 10]. The IHC excitation sig-
nal has a narrow bandwidth and a center frequency
that depends on the inner hair cell’s location along the
basilar membrane. Each hair cell is about 10 µm in
diameter while the human basilar membrane is about
35 mm in length (35 000 µm). Thus the neurons of the
auditory nerve encode the responses of about 3500 in-
ner hair cells which form a single row of cells along
the length of the BM. Each inner-hair-cell voltage is
a low-pass-filtered representation of the detected inner-
hair-cell cilia displacement [3.11]. Each hair cell is
connected to many neurons, having a wide range of
spontaneous firing rates and thresholds [3.12]. In the
cat, for example, approximately 15–20 neurons en-
code each of these narrow band inner hair cells with
a neural timing code. It is commonly accepted that all
mammalian cochleae are similar in function except the
frequency range of operation differs between species

(e.g., human ≈ 0.1–20 kHz and cat ≈ 0.3–50 kHz). It
is widely believed that the neuron information chan-
nel between the hair cell and the cochlear nucleus is
a combination of the mean firing rate and the rela-
tive timing between neural pulses (spikes). The mean
firing rate is reflected in the loudness coding, while
the relative timing carries more subtle cues, including
for example pitch information such as speech voicing
distinctions.

Outer Hair Cells
As shown in Fig. 3.1b there are typically three (occa-
sionally four) outer hair cells (OHCs) for each inner
hair cell (IHCs), leading to approximately 12 000 OHCs
in the human cochlea. Outer hair cells are used for inten-
sity dynamic-range control. This is a form of NL signal
processing, not dissimilar to Dolby sound processing.
This form of processing was inspired by cochlear func-
tion, and was in use long before it was patented by
Dolby, in movie sound systems developed by Bell Labs
in the 1930s and 1940s. Telephone speech is similarly
compressed [3.13] via µ-law coding. It is well known
(as was first proposed by Lorente de Nó [3.14] and
Steinberg [3.3]) that noise damage of nerve cells (i. e.,
OHCs) leads to a reduction of dynamic range, a dis-
order clinically named loudness recruitment. The word
recruitment, which describes the abnormal growth of
loudness in the impaired ear, is a seriously misleading
term, since nothing is being recruited [3.15].

We may describe cochlear processing two ways: first
in terms of the signal representation at various points in
the system; and second, in terms of models which are
our most succinct means of conveying the conclusions
of years of detailed and difficult experimental work on
cochlear function. The body of experimental knowledge
has been very efficiently represented (to the extent that it
is understood) in the form of these mathematical models.
When no model exists (e.g., because we do not under-
stand the function), a more basic description via the
experimental data is necessary. Several good books and
review papers that make excellent supplemental reading
are available [3.4, 8, 16, 17].

For pedagogical purposes this chapter has been di-
vided into four parts. Besides this introduction, we
include sections on the NL cochlea, neural masking, and
finally a brief discussion. Section 3.2 discusses dynamic
masking due to NL aspects of the cochlear outer hair
cells. This includes the practical aspects, and theory, of
the upward spread of masking (USM) and two-tone sup-
pression. Section 3.3 discusses neural masking, the JND,
loudness recruitment, the loudness signal-to-noise ratio
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(SNR), and the Weber fraction. Section 3.4 provides
a brief summary.

3.1.2 History of Cochlear Modeling

Typically the cochlea is treated as an uncoiled long thin
box, as shown in Fig. 3.2a. This represents the starting
point for the macromechanical models.

Macromechanics
In his book On the Sensations of Tone Helmholtz [3.18]
likened the cochlea to a bank of highly tuned resonators
selective to different frequencies, much like a piano or
a harp [3.19, p. 22–58], with each string representing
a different place X on the basilar membrane. This model
as proposed was quite limited since it leaves out key fea-
tures, the most important of which is the cochlear fluid
coupling between the mechanical resonators. But given
the early publication date, the great master of physics
and psychophysics Helmholtz shows deep insight and
his studies provided many very important contributions.

The next major contribution by Wegel and
Lane [3.20] stands in a class of its own even today, as
a double-barreled paper having both deep psychophys-
ical and modeling insight. Fletcher published much of
the Wegel and Lane data one year earlier [3.21]. It is
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Fig. 3.2a,b On the left (a) see the basic 2-D box model of
the cochlea. The Base (x = 0) is the high-frequency end of
the cochlea while the Apex (x = L) carries the low frequen-
cies. On the right (b) the 1924 Wegel and Lane electrical
equivalent circuit. The model is built from a cascade of
electrical sections

not clear to me why Wegel and Lane are always quoted
for these results rather than Fletcher. In Fletcher’s 1930
modeling paper, he mentioned that he was the subject in
the Wegel and Lane study. It seems to me that Fletcher
deserves some of the credit. The paper was the first to
quantitatively describe the details of how a high level
low frequency tone affects the audibility of a second
low-level higher-frequency tone (i. e., the upward spread
of masking). It was also the first publication to propose
a modern model of the cochlea, as shown in Fig. 3.2b.
If Wegel and Lane had been able to solve the model
equations implied by their circuit (of course they had no
computer to do this), they would have predicted cochlear
traveling waves. It was their mistake, in my opinion, to
make this a single paper. The modeling portion of their
paper has been totally overshadowed by their experi-
mental results. Transmission line theory had been widely
exploited by Campbell, the first mathematical research
at AT&T research (ca. 1898) with the invention of the
wave filter [3.22, 23], which had been used for speech
articulation studies [3.24–26], and Fletcher and Wegel
were fully utilizing Campbell’s important discoveries.

It was the experimental observations of G. von
Békésy starting in 1928 on human cadaver cochleae
which unveiled the physical nature of the basilar
membrane traveling wave. What von Békésy found (con-
sistent with the 1924 Wegel and Lane model) was that
the cochlea is analogous to a dispersive transmission
line where the different frequency components which
make up the input signal travel at different speeds along
the basilar membrane, thereby isolating each frequency
component at a different place X along the basilar
membrane. He properly identified this dispersive wave
a traveling wave, just as Wegel and Lane had predicted
in their 1924 model of the cochlea.

Over the intervening years these experiments have
been greatly improved, but von Békésy’s fundamental
observation of the traveling wave still stands. His origi-
nal experimental results, however, are not characteristic
of the responses seen in more-recent experiments, in
many important ways. These differences are believed
to be due to the fact that Békésy’s cochleae were dead,
and because of the high sound levels his experiments
required. He observed the traveling wave using strobo-
scopic light, in dead human cochleae, at sound levels
well above 140 dB−SPL.

Today we find that for a pure tone input the traveling
wave has a more sharply defined location on the basilar
membrane than that observed by von Békésy. In fact,
according to measurements made over the last 20 years,
the response of the basilar membrane to a pure tone
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can change in amplitude by more than five orders of
magnitude per millimeter of distance along the basilar
membrane (e.g., 300 dB/oct is equivalent to 100 dB/mm
in the cat cochlea).

The One-Dimensional Model of the Cochlea
To describe this response it is helpful to call upon
the macromechanical transmission line models of
Wegel [3.20] (Fig. 3.2b) and Fletcher [3.27], first quanti-
tatively analyzed by Zwislocki [3.28, 29], Ranke [3.30],
Peterson and Bogert [3.31], Fletcher [3.32, 33]. This
popular transmission line model is now denoted the
one-dimensional (1-D), or long-wave model.

Zwislocki [3.28] was first to quantitatively analyze
Wegel and Lane’s macromechanical cochlear model,
explaining Békésy’s traveling wave observations. The
stapes input pressure P1 is at the left, with the input
velocity V1, as shown by the arrow, corresponding to
the stapes velocity. This model represents the mass of
the fluids of the cochlea as electrical inductors and the
BM stiffness as capacitor. Electrical circuit networks
are useful when describing mechanical systems. This
is possible because of an electrical to mechanical ana-
log that relates the two systems of equations. Electrical
circuit elements comprise a de facto standard for de-
scribing such equations. It is possible to write down the
equations that describe the system from the circuit of
Fig. 3.2b, by those trained in the art. Engineers and sci-
entists frequently find it easier to read and think in terms
of these pictorial circuit diagrams, than to interpret the
corresponding equations.

BM Impedance. During the following discussion it is
necessary to introduce the concept of a one-port (two-
wire) impedance. Ohm’s law defines the impedance as

Impedance = effort

flow
. (3.1)

In an electrical system the impedance is the ratio of
a voltage (effort) over a current (flow). In a mechanical
system it is the force (effort) over the velocity (flow).

For linear time-invariant causal (LTIC) systems
(i. e., an impedance), phasor notation is very useful,
where the tone is represented as the real part (Re) of the
complex exponential

ei2π ft+iφ ≡ cos (2π ft +φ)+ i sin (2π ft +φ) .

(3.2)

The symbol ≡ denotes equivalence. It means that the
quantity to the left of ≡ is defined by the quantity on
the right. More specifically, impedance is typically de-

fined in the frequency domain using Laplace transform
notation, in terms of a damped tone

A eσ t cos (2π ft +φ) ≡ A Re est+iφ (3.3)

excitation, characterized by the tone’s amplitude A,
phase φ and complex Laplace frequency s ≡ σ + i2π f .
When a function such as Z(s) is shown as a function
of the complex frequency s, this means that its inverse
Laplace transform z(t) ↔ Z(s) must be causal. In the
time domain, the voltage may be found from the current
via a convolution with z(t). Three classic examples of
such impedances are presented next.

Example 3.1: The impedance of the tympanic mem-
brane (TM, or eardrum) is defined in terms of a pure
tone pressure in the ear canal divided by the result-
ing TM volume velocity (the velocity times the area of
TM motion) [3.34, 35]. The pressure (effort) and vol-
ume velocity (flow) referred to here are conventionally
described using complex numbers, to account for the
phase relationship between the two.

Example 3.2: The impedance of a spring is given by the
ratio of the force F( f ) to velocity V ( f ) = sX( f ) with
displacement X

Z(s) ≡ F

V
= K

s
= 1

sC
, (3.4)

where the spring constant K is the stiffness, C the com-
pliance, and s is the complex radian frequency. The
stiffness is represented electrically as a capacitor (as
parallel lines in Fig. 3.2b). Having s = σ + i2π f in the
denominator indicates that the impedance of a spring has
a phase of −π/2 (e.g., −90◦). Such a phase means that
when the velocity is cos (2π ft), the force is sin (2π ft).
This follows from Hooke’s law

F = K X = K

s
sX = K

s
V . (3.5)

Example 3.3: From Newton’s law F = Ma where F is
the force, M is the mass, and acceleration a(s) = sV (s)
(i. e., the acceleration in the time domain is dv(t)/dt).
The electrical element corresponding to a mass is an
inductor, indicated in Fig. 3.2b by a coil. Thus for a mass
Z(s) = sM.

From these relations the magnitude of the impedance
of a spring decreases as 1/ f , while the impedance mag-
nitude of a mass is proportional to f . The stiffness with
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its −90◦ phase is called a lagging phase, while the mass
with its +90◦ phase is called a leading phase.

Different points along the basilar membrane are
represented by the cascaded sections of the lumped
transmission line model of Fig. 3.2b. The position X
along the model is called the place variable and corre-
sponds to the longitudinal position along the cochlea.
The series (horizontal) inductors (coils) denoted by Lk
represent the fluid mass (inertia) along the length of
the cochlea, while the shunt elements represent the
mechanical (acoustical) impedance of the correspond-
ing partition (organ of Corti) impedance, defined as the
pressure drop across the partition divided by its volume
velocity per unit length

Zp(s, X) = Kp(X)

s
+ Rp(X)+ sMp , (3.6)

where K (X) is the partition stiffness, and Rp is the par-
tition resistance. Each inductor going to ground (li in
Fig. 3.2b) represents the partition plus fluid mass per
unit length Mp of the section. Note that sM, Rp and
K/s are impedances, but the mass M and stiffness K are
not. The partition stiffness decreases exponentially along
the length of the cochlea, while the mass is frequently
approximated as being independent of place.

As shown in Fig. 3.3a, for a given input frequency
the BM impedance magnitude has a local minimum at
the shunt resonant frequency, where the membrane that
can move in a relatively unrestricted manner. The shunt
resonance has special significance because at this reso-
nance frequency Fcf(X) the inductor and the capacitor
reactance cancel each other, creating an acoustic hole,
where the only impedance element that contributes to
the flow resistance is Rp. Solving for Fcf (X)

Kp(X)

2πiFcf
+2πiFcf Mp = 0 . (3.7)

defines the cochlear map function, which is a key con-
cept in cochlear modeling:

Fcf(X) ≡ 1

2π

√
Kp(X)

Mp
. (3.8)

The inverse of this function specifies the location of
the hole Xcf( f ) as shown in Fig. 3.3a. In the example
of Fig. 3.3a two frequencies are show, at 1 and 8 kHz,
with corresponding resonant points shown by Xcf(1) and
Xcf(8).

Basal to Xcf( f ) in Fig. 3.3a, the basilar membrane
is increasingly stiff, and apically (to the right of the
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Fig. 3.3 (a) Plot of the log-magnitude of the impedance as
a function of place for two different frequencies of 1 and
8 kHz showing the impedance; the region labeled K (X) is
the region dominated by the stiffness and has impedance
K (X)/s. The region labeled M is dominated by the mass
and has impedance sM. The characteristic places for 1 and
8 kHz are shown as Xcf . (b) Cochlear map of the cat follow-
ing Liberman and Dodds. The resonance frequency depends
on place according to the cochlear map function (b). A crit-
ical bandwidth ∆ f ( f ) and a critical spread ∆x(X) area
related through the cochlear map

resonant point), the impedance is mass dominated. The
above description is dependent on the input frequency
f since the location of the hole is frequency dependent.
In this apical region the impedance has little influence
since almost no fluid flows past the low-impedance hole.
This description is key to our understanding of why the
various frequency components of a signal are splayed
out along the basilar membrane.

If one puts a pulse of current in at the stapes, the high-
est frequencies that make up the pulse would be shunted
close to the stapes since at high frequencies the hole is
near the stapes, while the lower frequencies would con-
tinue down the line. As the low-pass pulse travels down
the basilar membrane, the higher frequencies are pro-
gressively removed, until almost nothing is left when
the pulse reaches the end of the model (the helicotrema
end, the apex of the cochlea).
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When a single tone is played, the response in the base
increases in proportion to the BM compliance (inversely
with the stiffness) until there is is a local maximum just
before the traveling wave reaches the resonant hole, at
which point the response plummets, since the fluid flow
is shorted by the hole. For a fixed stimulus frequency
f there is a maximum along the place axis called the
characteristic place, denoted by X(p)

cf ( f ). Likewise at
a given place X as a function of frequency there is a local
maximum called the characteristic frequency, denoted
by F(p)

cf (X). The relation between the peak in place as
a function of frequency or of the peak in frequency as
a function of place is also called the cochlear map. There
is serious confusion with conventional terminology here.
The resonant frequency of the BM impedance mathe-
matically defines Fcf and specifies the frequency on the
base of the high-frequency steep portion of the tuning
slope, not the peak. However the peak is used as the vi-
sual cue, not the base of the high-frequency slope. These
two definitions differ by a small factor (that is ignored)
that depends directly on the high-frequency slope of the
response. Over most of the frequency range this slope is
huge, resulting in a very small factor, justifying its be-
ing ignored. However at very low frequencies the slope
is shallow and the factor can then be large. The droop in
the cochlear map seen in Fig. 3.3b at the apex (x = L)
may be a result of these conflicting conflicting defini-
tions. The cochlear map function Fcf(X) plays a key role
in cochlear mechanics, has a long history, and is known
by many names [3.27, 36–40], the most common today
being Greenwood’s function. In the speech literature it
is called the Mel scale.

The spread of the response around the peak for
a fixed frequency is denoted the critical spread ∆x( f ),
while the frequency spread at a given place is called
the critical band denoted ∆ f (X). As early as 1933 it
was clear that the critical band must exist, as extensively
discussed by Fletcher and Munson [3.41]. At any point
along the BM the critical band is proportional to the
critical ratio κ(X), defined as the ratio of pure tone de-
tection intensity at threshold in a background of white
noise, to the spectral level of the noise, namely

∆ f (X) ∝ κ(X) . (3.9)

In the next section we shall show how the the rela-
tions between these various quantities are related via the
cochlear map.

Derivation of the Cochlear Map Function. The deriva-
tion of the cochlear map is based on counting critical
bands as shown by Fletcher [3.10] and popularized
by Greenwood [3.42]. The number of critical bands
Ncb may be found by integrating the critical band
density over both frequency and place, and equat-
ing these two integrals, resulting in the cochlear map
Fcf(X):

Ncb ≡
Xcf∫
0

dX

∆ f (X)
=

Fcf∫
0

d f

∆x( f )
. (3.10)

There are approximately 20 pure-tone frequency
JNDs per critical band [3.37], [3.43, p. 171], and they
showed that the critical ratio expressed in dB κdB(X) is
of the form aX +b, where a and b are constants [3.10].
As verified by Greenwood [3.42, p. 1350, (1)] the critical
bandwidth in Hz is therefore

∆ f (X) ∝ 10κdB(X)/10 . (3.11)

The critical spread ∆x(X) is the effective width of
the energy spread on the basilar membrane for a pure
tone. Based on a suggestion by Fletcher showed that for
the cat ∆x(X) corresponds to about 2.75 times the basilar
membrane width, Wbm(X) ∝ eX [3.10]. It is reasonable
to assume that the same relation would hold in the human
case.

The direct observation of the cochlear map in the
cat was made by Liberman [3.44] and Liberman and
Dodds [3.45], and they showed the following empirical
formula fit the data

Fcf(X) = 456(102.1(1−X/L) −0.8) , (3.12)

where the length of the cat cochlea is L = 21 mm,
and X is measured from the stapes [3.44]. The
same formula may be used for the human cochlea
if L = 35 mm is used, the 456 is replaced by 165.4,
and 0.8 by 0.88. Based on (3.12), and as de-
fined in Fig. 3.3b, the slope of the cochlear map is
3 mm/oct for the cat and 5 mm/oct for the human, as
may be determined from the formula L log10(2)/2.1
with L = 21 or 35 for cat and human, respec-
tively.

For a discussion of work after 1960 on the critical
band see Allen [3.10], Hartmann [3.17].
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3.2 The Nonlinear Cochlea

3.2.1 Cochlear Modeling

In cochlear modeling there are two fundamental
intertwined complex problems, cochlear frequency se-
lectivity and cochlear/OHC nonlinearity. Wegel and
Lane’s 1924 transmission line wave theory was a most
important development, since it was published 26 years
prior to the experimental results of von Békésy, and
it was based on a simple set of physical principles,
conservation of fluid mass, and a spatially variable
basilar membrane stiffness. It gives insight into both
the NL cochlea, as well has two-dimensional (2-D)
model frequency-selective wave-transmission effects
(mass loading of the BM).

Over a 15 year period starting in 1971, there was
a paradigm shift. Three discoveries rocked the field:

1. nonlinear compressive basilar membrane and inner-
hair-cell measures of neural-like cochlear frequency
selectivity [3.47, 48],
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Fig. 3.4a,b There are six numbers that characterize every curve, three slopes (S1, S2, S3), in dB/oct, two frequencies
(Fz, Fcf), and the excess gain characterizes the amount of gain at Fcf relative to the gain defined by S1. The excess gain
depends on the input level for the case of a nonlinear response like the cochlea. Rhode found up to ≈ 35 dB of excess
gain at 7.4 kHz and 55 dB−SPL, relative to the gain at 105 dB−SPL. From of the 55 dB−SPL curve of (a) (the most
sensitive case), and his Table I, S1 = 9, S2 = 86, and S3 = −288 (dB/oct), Fz = 5 kHz, Fcf = 7.4 kHz, and an excess
gain of 27 dB. Rhode reported S1 = 6 dB/oct, but 9 seems to be a better fit to the data, so 9 dB/oct is the value we have
used for our comparisons. (a) Response of the basilar membrane for his most sensitive animal. The graduations along
the abscissa are at 0.1, 1.0 and 10.0 kHz (after [3.46, Fig. 9a]) (b) Basic definition of the 6 parameters for characterizing
a tuning curve: slopes S1, S2, S3, frequencies Fz and Fcf , and the excess gain

2. otoacoustic (ear canal) nonlinear emissions [3.49],
and

3. motile outer hair cells [3.50].

Today we know that these observations are related,
and all involve outer hair cells. A theory (e.g., a com-
putational model) is needed to tie these results together.
Many groups are presently working out such theories.

On the modeling side during the same period (the
1970’s) all the variants of Wegel and Lane 1-D linear
theory were becoming dated because:

1. numerical model results became available, which
showed that 2- and three-dimensional (3-D) models
were more frequency selective than the 1-D model,

2. experimental basilar membrane observations showed
that the basilar membrane motion had a nonlinear
compressive response growth, and

3. improved experimental basilar membrane obser-
vations became available which showed increased
nonlinear cochlear frequency selectivity.
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Because these models and measures are still under
development today [the problem has not yet (ca. 2007)
been solved], it is necessary to describe the data
rather than the models. Data that drives these nonlinear
cochlear measures include.

• The upward spread of masking (USM), first de-
scribed quantitatively by Wegel and Lane in 1924,• Distortion components generated by the cochlea and
described by Wegel and Lane [3.20], Goldstein and
Kiang [3.52], Smoorenburg [3.53], Kemp [3.54], Kim
et al. [3.55], Fahey and Allen [3.56] and many others,• Normal loudness growth and recruitment in the im-
paired ear [3.3, 41],• The frequency dependent neural two-tone suppres-
sion observed by Sachs and Kiang [3.57], Arthur
et al. [3.58], Kiang and Moxon [3.59], Abbas and
Sachs [3.60], Fahey and Allen [3.56], Pang and
Guinan [3.61], and others,• The frequency-dependent basilar membrane response-
level compression first described by Rhode [3.46,
47],• The frequency-dependent inner-hair-cell receptor
potential level compression, first described by Sellick
and Russell [3.48], Russell and Sellick [3.62].• Forward masking data that shows a linear return to
baseline after up to 0.2 s [3.63]. There may be com-
pelling evidence that OHCs are the source of forward
masking.

We shall discuss each of these, but two related meas-
ures are the most important for understanding these NL
masking effects, the upward spread of masking (USM)
and two-tone suppression (2TS).

Basilar Membrane Nonlinearity. The most basic early
and informative of these nonlinear effects was the NL
basilar membrane measurements made by Rhode [3.46,
47], as shown in Fig. 3.4a, showing that the basilar mem-
brane displacement to be a highly NL function of level.
For every four dB of pressure level increase on the in-
put, the output displacement (or velocity) only changed
one dB. This compressive nonlinearity depends on fre-
quency, and only occurs near the most sensitive region
(e.g., the tip of the tuning curve). For other frequencies
the system was either linear, namely, one dB of input
change gave one dB of output change for frequencies
away from the best frequency, or very close to linear.
This NL effect was highly dependent on the health of
the animal, and would decrease or would not be present
at all, when the animal was not in its physiologically
pristine state.

An important and useful measure of cochlear linear
and nonlinear response first proposed by Rhode [3.46,
Fig. 8], is shown in Fig. 3.4b which describes cochlear
tuning curves by straight lines on log–log coordinates.
Such straight line approximations are called Bode plots
in the engineering literature. The slopes and break
points, defined as the locations where the straight lines
cross, characterize the response.

Otoacoustic Emissions. A few years after Rhode’s
demonstration of cochlear nonlinearity, David Kemp
observed otoacoustic emissions (tonal sound emanat-
ing from the cochlea and NL echos to clicks and tone
bursts) [3.49,54,64–66]. Kemp’s findings were like a jolt
to the field, which led to a cottage industry of objective
testing of the auditory system, including both cochlear
and middle ear tests.

Motile OHCs. Subsequently, Brownell et al. [3.50] dis-
covered that isolated OHCs change their length when
placed in an electric field, thus that the outer hair cell
is motile. This then led to the intuitive and widespread
proposal that outer hair cells act as voltage-controlled
motors that directly drive the basilar membrane on a cy-
cle by cycle basis. It seems quite clear, from a great deal
of data, that the OHC onset response time is on the order
of one cycle or so of the BM impulse response, because
the first peak is linear [3.67]. The release time must be
determined by the OHC membrane properties, which is
slow relative to the attack. Thus OHC NL processing is
the basis for both the frequency asymmetry of simulta-
neous (upward versus downward spread) and temporal
(forward versus backward) masking.

As summarized in Fig. 3.5, OHCs provide feedback
to the BM via the OHC receptor potential, which in
turn is modulated by both the position of the basilar
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Fig. 3.5 Block flow diagram of the inner ear (after
Allen [3.51])
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membrane (forming a fast feedback loop), and alterna-
tively by the efferent neurons that are connected to the
outer hair cells (forming a slow feedback loop). The de-
tails of all this are the topic of a great deal of present
research.

OHCs are the one common element that link all the
NL data previously observed, and a missing piece of
the puzzle that most needs to be understood before any
model can hope to succeed in predicting basilar mem-
brane, hair cell, and neural tuning, or NL compression.
Understanding the outer hair cell’s two-way mechanical
transduction is viewed as the key to solving the problem
of the cochlea’s dynamic range.

Historically the implication that hair cells might play
an important role in cochlear mechanics go back at least
to 1936 when loudness recruitment was first reported by
Fowler [3.68] in a comment by R. Lorente de Nó [3.14]
stating that cochlear hair cells are likely to be involved
in loudness recruitment.

The same year Steinberg and Gardner [3.3] were
explicit about the action of recruitment when they con-
cluded:

When someone shouts, such a deafened person suf-
fers practically as much discomfort as a normal
hearing person would under the same circum-
stances. Furthermore for such a case, the effective
gain in loudness afforded by amplification depends
on the amount of variable type loss present. Owing
to the expanding action of this type of loss it would
be necessary to introduce a corresponding compres-
sion in the amplifier in order to produce the same
amplification at all levels.

Therefore as early as 1937 there was a clear sense
that cochlear hair cells were related to dynamic range
compression.

More recently, theoretical attempts to explain the dif-
ference in tuning between normal and damaged cochleae
led to the suggestion that OHCs could influence BM
mechanics. In 1983 Neely and Kim [3.69] concluded:

We suggest that the negative damping components
in the model may represent the physical action of
outer hair cells, functioning in the electrochemical
environment of the normal cochlea and serving to
boost the sensitivity of the cochlea at low levels of
excitation.

In 1999 yet another (a fourth) important discovery
was made, that the outer-hair-cell mechanical stiffness
depends on the voltage across its membrane [3.70, 71].
This change in stiffness, coupled with the naturally oc-

curring internal static pressure, may well account for
the voltage dependent accompanying length changes
(the cell’s voltage dependent motility). This view fol-
lows from the block diagram feedback model of the
organ of Corti shown in Fig. 3.5 where the excita-
tion to the OHC changes the cell voltage Vohc, which
in turn changes the basilar stiffness [3.51]. This is
one of several possible theories that have been put
forth.

This experimental period set the stage for explain-
ing the two most dramatic NL measures of cochlear
response, the upward spread of masking and its re-
lated neural correlate, two-tone suppression, and may
well turn out to be the explanation of the nonlinear
forward-masking effect as well [3.63].

Simultaneous Dynamic-Masking
The psychophysically measured upward spread of
masking (USM) and the neurally measured two-tone
suppression (2TS) are closely related dynamic-masking
phenomena. Historically these two measures have been
treated independently in the literature. As will be
shown, it is now clear that they are alternative objective
measures of the same OHC compressive nonlinear-
ity. Both involve the dynamic suppression of a basal
(high-frequency) probe due to the simultaneous presen-
tation of an apical (low-frequency) suppressor. These
two views (USM versus 2TS) nicely complement
each other, providing a symbiotic view of cochlear
nonlinearity.

Upward Spread of Masking (USM). In a classic paper,
Mayer [3.72] was the first to describe the asymmetric
nature of masking [3.63,73]. Mayer made his qualitative
observations with the use of clocks, organ pipes and
tuning forks, and found that that the spread of masking
is a strong function of the probe-to-masker frequency
ratio ( fp/ fm) [3.63].

In 1923, Fletcher published the first quantitative
results of tonal masking. In 1924, Wegel and Lane
extended Fletcher’s experiments (Fletcher was the sub-
ject [3.27, p. 325]) using a wider range of tones. Wegel
and Lane then discuss the results in terms of their 1-D
model described above. As shown in Fig. 3.6a, Wegel
and Lane’s experiments involved presenting listeners
with a masker tone at frequency fm = 400 Hz and in-
tensity Im (the abscissa), along with a probe tone at
frequency fp (the parameter used in the figure). At
each masker intensity and probe frequency, the thresh-
old probe intensity I∗

p (Im) is determined, and displayed
relative to its threshold sensation level (SL) (the ordinate
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Fig. 3.6a,b On the left (a) we see the psychoacoustic measure of 2TS, called the upward spread of masking. On the
right (b) are related measures taken in the auditory nerve by a procedure called two-tone suppression (2TS). Low- and
high-side masking or suppression have very different thresholds and slopes. These suppression slopes and thresholds are
very similar between 2TS and the USM. (a) Upward spread of masking as characterized by Wegel and Lane in 1924. The
solid lines correspond to the probe being higher than the 400 Hz masker, while the dashed lines correspond to the 400 Hz
probe lower than the masker. On the left we see upward spread of masking functions from Wegel and Lane for a 400 Hz
low-frequency masker. The abscissa is the masker intensity Im in dB−SL while the ordinate is the threshold probe
intensity I∗

p (Im) in dB−SL. The frequency of the probe fp, expressed in kHz, is the parameter indicated on each curve.
The dashed box shows that the masking due to a 1 kHz tone becomes more than that at 450 Hz, for a 400 Hz probe. This
is the first observation of excitation pattern migration with input intensity. (b) Two-tone suppression (2TS) input–output
(IO) functions from Abbas and Sachs [3.60, Fig. 8]. On the left (1) is low-side suppression and on the right (2) we see
high-side suppression. In 2TS the suppressor plays the role of the masker and the probe the role of the maskee. Note
that the threshold of suppression for low-side suppressor (masker) is close to 70 dB−SPL, which is similar to human
low-side suppressors, the case of the Wegel and Lane USM (1) (60–70 dB−SPL). The onset of suppression for high-side
suppressors is close to the neuron’s CF threshold of 50 dB, as elaborated further in Fig. 3.7a

is the probe level at threshold [dB−SL]). The asterisk
indicates a threshold measure.

In Fig. 3.6a fm = 400 Hz, Im is the abscissa, fp is
the parameter on each curve, in kHz, and the threshold
probe intensity I∗

p (Im) is the ordinate. The dotted line
superimposed on the 3 kHz curve (Im/1060/10)2.4 repre-
sents the suppression threshold at 60 dB−SL which has
a slope of 2.4 dB/dB. The dotted line superimposed on
the 0.45 kHz curve has a slope of 1 and a threshold of
16 dB−SL.

Three regions are clearly evident: the downward
spread of masking ( fp < fm, dashed curves), critical
band masking ( fp ≈ fm, dashed curve marked 0.45),
and the upward spread of masking ( fp > fm, solid
curves) [3.74].

Critical band masking has a slope close to 1 dB/dB
(the superimposed dotted line has a slope of 1). Four
years later Riesz [3.75] shows critical band masking

obeys the near miss to Weber’s law, as described
in Sect. 3.3.2. The downward spread of masking (the
dashed lines in Fig. 3.6a) has a low threshold intensity
and a variable slope that is less than one dB/dB, and
approaches 1 at high masker intensities. The upward
spread of masking (USM), shown by the solid curves,
has a threshold near 50 dB re sensation level (e.g.,
65 dB−SPL), and a growth just less than 2.5 dB/dB.
The dotted line superimposed on the fp = 3 kHz curve
has a slope of 2.4 dB/dB and a threshold of 60 dB−SL.

The dashed box shows that the upward spread
of masking of a probe at 1 kHz can be greater
than the masking within a critical band (i. e.,
fp = 450 Hz > fm = 400 Hz). As the masker frequency
is increased, this crossover effect occurs in a small
frequency region (i. e., 1/2 octave) above the masker fre-
quency. The crossover is a result of a well-documented
NL response migration, of the excitation pattern with
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Fig. 3.7 (a) Definitions of 2TS low-side masking procedure (see (3.13) and (3.14)). (b) Example of 2TS (low-side
masking) in the cat auditory nerve (AN). A cat neural tuning curve taken with various low-side suppressors present
(suppressor below the best frequency), as indicated by the symbols. The tuning curve with the lowest threshold is for no
suppressor. When the suppressor changes by 20 dB, the Fcf threshold changes by 36 dB. Thus for a 2 kHz neuron, the
slope is 36/20, or 1.8. These numbers are similar to those measure by Delgutte [3.80]. One Pa = 94 dB−SPL

stimulus intensity, described in a wonderful paper by
McFadden [3.76]. Response migration was also ob-
served by Munson and Gardner in a classic paper on
forward masking [3.77]. This important migration ef-
fect is beyond the scope of the present discussion, but
is reviewed in [3.74, 78, 79] discussed in the caption of
Fig. 3.10.

The upward spread of masking is important be-
cause it is easily measured psychophysically in normal
hearing people, is robust, well documented, and nicely
characterizes normal outer-hair-cell nonlinearities. The
psychophysically measured USM has correlates in basi-
lar membrane and hair cell signals, and is known as
two-tone suppression (2TS) in the auditory nerve litera-
ture, as discussed in the caption of Fig. 3.6b.

Two-Tone Suppression. The neural correlate of the
psychophysically measured USM is called two-tone sup-
pression (2TS). As shown in the insert of Fig. 3.7a, first
a neural tuning curve is measured. A pure tone probe
at intensity Ip( fp), and frequency fp, is placed a few
dB (e.g., 6 to 10) above threshold at the characteris-
tic (best) frequency of the neuron Fcf (i. e., fp = Fcf).
In 2TS a suppressor tone plays the role of the masker.
There are two possible thresholds. The intensity of the
suppressor tone Is( fs) at frequency fs is increased until
either

1. the rate response to either the probe alone R(Ip, Is =
0) decreases by a small increment ∆R, or

2. drops to the small increment ∆R, just above the
undriven spontaneous rate R(0, 0).

These two criteria are defined in Fig. 3.6b and may be
written

Rp
(
Ip, I∗

s

) ≡ R(Ip, 0)−∆R (3.13)

and

Rspont
(
Ip, I∗

s

) ≡ R(0, 0)+∆R ; (3.14)

∆R indicates a fixed small but statistically significant
constant change in the rate (e.g., ∆R = 20 spikes/s is
a typical value). The threshold suppressor intensity is
defined as I∗

s ( fs), and as before the ∗ indicates the thresh-
old suppressor intensity. The two threshold definitions
(3.13) and (3.14) are very different, and both are useful.
The difference in intensity between the two thresholds
is quite large, and the more common measure used by
Abbas and Sachs [3.60] is (3.13). The second measure
(3.14) is consistent with neural tuning curve suppres-
sion, and is therefore the more interesting of the two. It
corresponds to suppression of the probe to threshold.

Neural data of Abbas and Sachs [3.60, Fig. 8] are
reproduced in Fig. 3.6b. For this example (see entry in
lower-right just below 105), Fcf is 17.8 kHz, and the
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fp = Fcf probe intensity 20 log 10(|P1|) is 60 dB. The
label on the curves is the frequency f1. The thresh-
old intensity of the associated neural tuning curve is
has a low spontaneous rate and a 50–55 dB threshold.
The left panel of Fig. 3.6b is for apical suppressors that
are lower in frequency than the characteristic frequency
(CF) probe ( fs < fp). In this case the threshold is just
above 65 dB−SPL. The suppression effect is relatively
strong and almost independent of frequency. In this ex-
ample the threshold of the effect is less than 4 dB apart
(the maximum shift of the two curves) at suppressor
frequencies fs of 10 and 5 kHz (a one octave separation).

The right panel shows the case fs > fp. The suppres-
sion threshold is close to the neuron’s threshold (e.g.,
50 dB−SPL) for probes at 19 kHz, but increases rapidly
with frequency. The strength of the suppression is weak
in comparison to the case of the left panel ( fs < fp), as
indicated by the slopes of the family of curves.

The Importance of the Criterion. The data of Fig. 3.6b
uses the first suppression threshold definition (3.13) Rs
(a small drop from the probe driven rate). In this case the
Fcf probe is well above its detection threshold at the sup-
pression threshold, since according to definition (3.13),
the probe is just detectably reduced, and thus audible.
With the second suppression threshold definition (3.14),
the suppression threshold corresponds to the detection
threshold of the probe. Thus (3.14), suppression to the
spontaneous rate, is appropriate for Wegel and Lane’s
masking data where the probe is at its detection thresh-
old I∗

p (Im). Suppression threshold definition (3.14) was
used when taking the 2TS data of Fig. 3.7b, where the
suppression threshold was estimated as a function of
suppressor frequency.

To be consistent with a detection threshold criterion,
such as the detection criterion used by Wegel and Lane in
psychophysical masking, (3.14) must be used. To have
a tuning curve pass through the Fcf probe intensity of a
2TS experiment (i. e., be at threshold levels), it is nec-
essary to use the suppression to rate criterion given by
(3.14). This is shown in Fig. 3.7b where a family of tun-
ing curves is taken with different suppressors present.
As described by Fahey and Allen [3.56, Fig. 13], when
a probe is placed on a specific tuning curve of Fig. 3.7b,
corresponding to one of the suppressor level symbols
of Fig. 3.7b, and a suppression threshold is measured,
that suppression curve will fall on the corresponding
suppression symbol of Fig. 3.7b. There is a symmetry
between the tuning curve measured in the presents of
a suppressor, and a suppression threshold obtained with
a given probe. This symmetry only holds for criterion

(3.14), the detection threshold criterion, which is appro-
priate for Wegel and Lane’s data. If one uses (3.13) as
in [3.60] they will not see this symmetry as cleary.

Suppression Threshold. Using the criterion (3.14),
Fahey and Allen [3.56, Fig. 13] showed that the suppres-
sion threshold I∗

s (Ip) in the tails is near 65 dB−SPL
(0.04 Pa). This is true for suppressors between 0.6 and
4 kHz. A small amount of data are consistent with the
threshold being constant to much higher frequencies, but
the Fahey and Allen data are insufficient on that point.

Suppression Slope. Delgutte has written several insight-
ful papers on masking and suppression [3.80–82]. He
estimated how the intensity growth slope (in dB/dB)
of 2TS varies with suppressor frequency for several
probe frequencies [3.80]. As may be seen in his fig-
ure, the suppression growth slope for the case of a low
frequency apical suppressor on a high frequency basal
neuron (the case of the left panel of Fig. 3.6b), is
≈ 2.4 dB/dB. This is the same slope as for Wegel and
Lane’s 400 Hz masker, 3 kHz probe USM data shown
in Fig. 3.6a. For suppressor frequencies greater than the
probe’s ( fs > fp), Delgutte reports a slope that is signif-
icantly less than 1 dB/dB. Likewise Wegel and Lane’s
data has slopes much less than 1 for the downward spread
of masking.

One may conclude that USM and 2TS data show
systematic and quantitative correlations between the
threshold levels and slopes. The significance of these
correlations has special importance because

1. they come from very different measurement
methods, and

2. Wegel and Lane’s USM are from human, while
the 2TS data are from cat, yet they show simi-
lar responses. This implies that the cat and human
cochleae may be quite similar in their NL responses.

The USM and 2TS threshold and growth slope
(e.g., 50 dB−SL and 2.4 dB/dB) are important fea-
tures that must be fully understood and modeled before
we can claim to understand cochlear function. While
there have been several models of 2TS [3.83–85] as
discussed in some detail by Delgutte [3.80], none are
in quantitative agreement with the data. The two-tone
suppression model of Hall [3.84] is an interesting contri-
bution to this problem because it qualitatively explores
many of the key issues. Finally forward-masking data
also show related nonlinear properties that we specu-
late may turn out to be related to NL OHC function as
well [3.78, 86, 87].
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3.2.2 Outer-Hair-Cell Transduction

The purpose of this section is to address two intimately
intertwined problems cochlear frequency selectivity and
cochlear nonlinearity. The fundamental question in
cochlear research today is: What is the role of the outer
hair cell (OHC) in cochlear mechanics? The OHC is the
source of the NL effect, and the end product is dynamic
masking, including the USM, 2TS and forward masking,
all of which include dramatic amounts of gain and tuning
variation. The issues are the nature of the NL transfor-
mations of the BM, OHC cilia motion, and OHC soma
motility, at a given location along the basilar membrane.

The prevailing and popular cochlear-amplifier view
is that the OHC provides cochlear sensitivity and fre-
quency selectivity [3.5, 88–92]. The alternative view,
argued here, is that the OHC compresses the excita-
tion to the inner hair cell, thereby providing dynamic
range expansion.

There is an important difference between these two
views. The first view deemphasizes the role of the OHC
in providing dynamic range control (the OHC’s role is
to improve sensitivity and selectivity), and assumes that
the NL effects result from OHC saturation.

The second view places the dynamic range problem
as the top priority. It assumes that the sole purpose of the
OHC nonlinearity is to provide dynamic range compres-
sion, and that the OHC plays no role in either sensitivity
or selectivity, which are treated as important but inde-
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Fig. 3.8a–c On the far left (a) is the electrical equivalent circuit model of an IHC with thermal noise sources due to the
cell leakage resistance Johnson and shot noise vJ and the Brownian motion of the cilia, represented by the voltage noise
source vB. The cilia force fc and velocity ξ̇c are the stimulus (input) variables to the forward transduction (b), and are
loaded by the mechanical impedance of the cilia viscous drag r and compliance c. (c) For OHCs, when the cilia move,
current flows into the cell charging the membrane capacitance, thus changing the membrane voltage Vm. This membrane
capacitance Cm(Vm) is voltage dependent (i. e., it is NL). The membrane voltage has also been shown to control the cell’s
soma axial stiffness. It follows that the axial force Fz(Vm) the cell can deliver, and the axial velocity Vz(Vm) of the cell,
must also depend on the membrane voltage. The precise details of how all this works is unknown

pendent issues. Of course other views besides these two
are possible.

The Dynamic-Range Problem
The question of how the large (up to 120 dB) dy-
namic range of the auditory system is attained has been
a long standing problem which remains fundamentally
incomplete. For example, recruitment, the most common
symptom of neurosensory hearing loss, is best charac-
terized as the loss of dynamic range [3.3, 10, 15, 93].
Recruitment results from outer-hair-cell damage [3.94].
To successfully design hearing aids that deal with the
problem of recruitment, we need models that improve
our understanding of how the cochlea achieves its dy-
namic range.

Based on a simple analysis of the IHC voltage, one
may prove that the dynamic range of the IHC must be
less than 65 dB [3.95]. In fact it is widely accepted that
IHC dynamic range is less than 50 dB.

The IHC’s transmembrane voltage is limited at the
high end by the cell’s open circuit (unloaded) mem-
brane voltage, and at the low end by thermal noise.
There are two obvious sources of thermal noise, cilia
Brownian motion, and Johnson (shot) noise across the
cell membrane (Fig. 3.8).

The obvious question arises: How can the basic
cochlear detectors (the IHCs) have a dynamic range
of less than 50 dB (a factor of 0.3 × 102), and yet the
auditory system has a dynamic range of up to 120 dB
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(a factor of 106)? The huge amount of indirect evidence
has shown that this increased dynamic range results from
mechanical NL signal compression provided by outer
hair cells. This dynamic-range compression shows up in
auditory psychophysics and in cochlear physiology in
many ways.

This thus forms the basic dynamic-range dilemma.

Outer-Hair-Cell Motility Model
A most significant finding in 1985 was of OHC motility,
namely that the OHC changes its length by up to 5% in
response to the cell’s membrane voltage [3.50, 97, 98].
This less than 5% change in length must account for
a 40 dB (100 times) change in cochlear sensitivity. This
observation led to a significant increases in research on
the OHC cell’s motor properties.

In 1999 it was shown that the cell’s longitudinal
soma stiffness changes by at least a factor of 2 (> 100%),
again as a function of cell membrane voltage [3.70,71].
A displacement of the cilia in the direction of the tallest
cilia, which is called a depolarizing stimulus, decreases
the magnitude of the membrane voltage |Vm|, decreases
the longitudinal soma stiffness, and decreases the cell
soma length. A hyperpolarizing stimulus increases the
stiffness and extends the longitudinal soma length.

Given this much larger relative change in stiffness
(a factor of 2) compared to the relative change in length
(a factor of 1.05), for a maximum voltage change, it
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Fig. 3.9a,b The tuning curves shown by the dashed lines are the average of single nerve fiber responses from six cats
obtained by M. C. Liberman and B. Delgutte. (a) Comparison between neural data and the computed model excitation
patterns from Allen’s passive RTM model (transfer function format). This CA model assumes an IHC cilia bundle
displacement of about 50 pm at the neural rate threshold. (b) Comparison between neural data computed tuning curves
from Neely’s active model [3.96]. This CA model assumes an IHC cilia bundle displacement of 300 pm (0.3 nm) at the
neural rate threshold

seems possible, or even likely, that the observed length
changes (the motility) are simply a result of the volt-
age dependent stiffness. For example, imagine a spring
stretched by applying a constant force (say a weight),
and then suppose that the spring’s stiffness decreases. It
follows from Hooke’s law (3.5) that the spring’s length
will increase when the stiffness decreases.

Each cell is stretched by its internal static pressure
P [3.99], and its stiffness is voltage controlled [3.70,
71]. The voltage dependent relative stiffness change is
much greater than the relative motility change. Thus
we have the necessary conditions for stiffness-induced
motility.

3.2.3 Micromechanics

Unlike the case of macromechanical models, the physics
of every micromechanical model differs significantly.
This is in part due to the lack of direct experimental ev-
idence of physical parameters of the cochlea. This is an
important and very active area of research (e.g., [3.100]).

To organize our discussion of cochlear micromech-
anics, we represent each radial cross-section through the
cochlear partition (Fig. 3.1b) as a linear two-port net-
work. A general formalization in transmission matrix
form of the relation between the basilar membrane input
pressure P(x, s) and velocity V (x, s) and the OHC out-
put cilia bundle shear force f (x, s) and shear velocity
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v(x, s)(
P

V

)
=

(
A B

C D

)(
f

v

)
, (3.15)

where A, B, C, and D are complex functions of place X
and radian frequency s.

Passive BM Models
The most successful passive model of cochlear tuning
is the resonant tectorial membrane (RTM) model [3.9,
102]. The RTM model starts from the assumption that
the slope S2 of BM tuning is insufficient to account for
the slope S2 of neural tuning, as seen in Fig. 3.4b. This
sharpening is accounted for by a reflection in the tecto-
rial membrane, introducing an antiresonance (spectral
zero) at frequency Fz (Fig. 3.4b), which is about half
an octave below the resonant frequency Fcf of the basi-
lar membrane. As described by Allen and Neely [3.9],
the detailed A, B, C, D elements of (3.15) are given by
Allen [3.102], Allen and Neely [3.9].

As described in Allen [3.103], the response ratio
of IHC cilia bundle displacement to basilar membrane
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displacement is defined as Hihc(x, s). The parameters of
the RTM model may be chosen such that model results fit
the experimental neural threshold tuning curves closely,
as shown in Fig. 3.9a.

The Nonlinear RTM Model. The resonant tectorial mem-
brane (RTM) model is made NL by control of the BM
stiffness via OHC’s stiffness is based on Fig. 3.1b. The
OHC soma stiffness has been shown to be voltage depen-
dent by Dallos et al. [3.104] and dependent on prestin
in the membrane wall [3.105]. If an elastic connection
is assumed where the TM attaches to the Limbus, and
if this elasticity is similar to that of the cilia of the
OHC, then the resulting transfer function between the
BM and IHC cilia is strongly filtered at low frequen-
cies [3.51,101,106,107]. Such models are actively under
consideration [3.100].

It is postulated that the decrease in OHC stiffness ac-
companying cilia stimulation results in a decrease of the
net BM partition stiffness Kp(x) (i. e., increasing compli-
ance) of (3.6). As shown in Fig. 3.3, this decrease in the
local BM stiffness would result in the partition excitation
pattern shifting basally towards the stapes. Such shifts in
the BM response patterns are commonly seen. Another
way to view this is shown in Fig. 3.10. This migration
of the excitation pattern, combined with the assumption
that the TM has a high-pass characteristic, means that
the cilia excitation gain at CF is nonlinearly compressed

Fig. 3.10a,b In (a) results of model calculations by Sen
and Allen [3.101] are shown of a NL BM stiffness model.
On the right shows a cartoon of what might happen to the
excitation pattern of a low-level probe when a suppressor
is turned on given such a nonlinearity. The presence of the
suppressor causes the probe to be suppressed and shifted
slightly toward the base when the stiffness is decreased with
increased level. It may be inferred from Fig. 3.3a that, if the
BM stiffness is reduced, the location of the maximum will
shift to the base, as is seen in real data. (a) Compression in
the NL RTM model. Note how the response at the peak is
reduced as the BM stiffness changes, causing the peak to
shift to the base. As this happens the response in the tail
region between 0 ≤ X ≤ 0.3 cm becomes more sensitive,
and thus shows an expansive NL response. All of these
effects have been seen in real BM data. (b) Cartoon showing
the effect of a low-side masker on a high-frequency tone as
a function of position along the basilar membrane. When the
suppressor is turned on, the CF of the high-frequency probe
becomes less sensitive and shifts to higher frequencies. We
model this effect in the panel on the left as BM stiffness
that depends on level (i. e., Kp(Is))
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as the intensity increases. This compression effect is
shown in a cartoon format in Fig. 3.10b, while Fig. 3.10a
shows the actual calculated model results. Note how the
bandwidth ∆ f (X)) remains approximately constant as
a function of input intensity.

Sewell [3.108] has nicely demonstrated that as the
voltage driving the hair cells changes, the neural gain in
dB at CF changes proportionally. It is not yet known why
the dB gain is proportional to the voltage (1 dB/mv),
however this would explain why forward masking de-
cays linearly in dB value with time, after a strong
excitation, since the membrane voltage Vm(t) is propor-
tional to et/τm , due to the OHC membrane’s τm = RC
time constant. In my view, explaining the proportion-
ality between the neural threshold in dB and the linear
membrane voltage, is key.

Discussion. Two important advantages of the NL RTM
model include its physically based assumptions (de-
scribed above), and its simplicity. Given these physical
assumptions, we show next that the NL RTM model can
explain:

1. the basal-ward half-octave traveling-wave migration
as a function of increasing intensity [3.76],

2. the upward spread of masking (USM) [3.20, 21],
two-tone suppression (2TS) (see Sect. 3.2.1),

3. distortion product generation [3.49,55,56,109–111],
4. normal and recruiting loudness growth, and
5. hypersensitive tails [3.45].

From the steep 2.5 dB/dB slope of the USM and 2TS
(Fig. 3.6a) it seems necessary that the low-frequency
suppressor is turning down the high-frequency probe
even though the growth of the masker at the high fre-
quency’s place is linear with masker level, as shown in
Fig. 3.10b.

Active BM Models
One obvious question about active cochlear models is
Are they really necessary? At least three attempts to an-
swer this question based on detailed comparisons of
basilar membrane responses have concluded that the
measured responses cannot be accounted for by a pas-
sive cochlear model [3.112–116].

The CA Hypothesis. The most popular active microme-
chanical theory is called the cochlear amplifier (CA)
hypothesis. The concept of the cochlear amplifier, ori-
ginated by Gold, Kemp, Kim and Neely, and named by
H. Davis, refers to a hypothetical mechanism within the
cochlear partition which increases the sensitivity of basi-

lar membrane vibrations to low-level sounds and, at the
same time, increases the frequency selectivity of these
vibrations [3.117]. The CA adds mechanical energy to
the cochlear partition at acoustic frequencies by draw-
ing upon the electrical and mechanical energy available
from the outer hair cells. In response to a tone, the CA
adds mechanical energy to the cochlear traveling wave
in the region defined by S2 as it approaches the place of
maximum response. This energy is reabsorbed at other
places along the cochlear partition. The resulting im-
provement in sensitivity of the ear due to the CA is
thought to be 40 dB, or more under certain conditions;
however, the details of how this amplification might be
accomplished are still unknown [3.118, 119]. A general
discussion of this model is presented in Geisler [3.90],
and in Allen and Fahey [3.91].

It is presumed that this OHC action amplifies the
BM signal energy on a cycle-by-cycle basis, increasing
the sensitivity [3.69, 92]. In some of the models it is as-
sumed that this cycle-by-cycle pressure (force) due to the
OHCs causes the sharp BM tuning tip. In most of these
models, the CA is equivalent to introducing a frequency-
dependent negative damping (resistance) into the BM
impedance [3.120]. Nonlinear compression is intro-
duced by assuming that the resistance is signal level de-
pendent. This NL resistance model was first described by
Hall [3.84] for the case of R > 0. Thus the CA model is
an extension of Hall’s model to the case of R < 0. In sev-
eral models NL negative damping is obtained with a non-
linear stiffness and a small delay. The addition of a small
delay introduces a negative real part into the impedance.
In mathematical physics, NL damping resonators are
described by van der Pol equations, while NL stiffness
resonators are described by Duffing equations [3.121].

Allen and Fahey [3.91] developed a method for di-
rectly measuring the cochlear amplifier (CA) gain. All
of the studies to date using this method have found
no gain. However many researchers continue to be-
lieve that the CA has gain. Given that the gain is order
40–50 dB this is difficult to understand. A nice summary
of this situation has been recently published in Shera and
Guinan [3.120]. The reasons for the failure to directly
measure any CA gain are complex and multifaceted, and
many important questions remain open. One possibility
that remains open is that the many observed large NL
OHC BM effects we see are not due to cycle-by-cycle
power amplification of the BM traveling wave.

Discussion and Summary
Discussion. Both active and passive BM models are
reasonably successful at simulating the neural thresh-
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old response tuning curves. Thus we may need to
look elsewhere to contrast the difference between these
two approaches, such as 2TS/USM. While the passive
RTM model is easily made NL with the introduction of
Kohc(Vm), differences between nonlinear RTM and CA
models have not yet been investigated. The CA and RTM
models differ in their interpretation of damaged cochlear
responses. In CA models, the loss of sensitivity of the
cochlea with damage is interpreted as a loss of CA gain
while in passive models, the loss of sensitivity has been
interpreted as a 2:1 change in the BM stiffness [3.122].

The discovery of OHC motility demonstrates the
existence of a potential source of mechanical energy
within the cochlear partition which is suitably positioned
to influence vibrations of the basilar membrane. It is
still an open question whether this source of energy is
sufficient to power a CA at high frequencies.

One possible advantage of the CA is that of improv-
ing the signal-to-noise ratio in front of the IHC detector.
A weakness of the CA models has been their lack of
specificity about the physical realization of the active el-
ements. Until we have a detailed physical representation
for the CA, RTM models have the advantage of being
simpler and more explicit.

The discovery by He and Dallos that the OHC soma
stiffness is voltage dependent is an exciting development
for the NL passive RTM model, as it greatly simplifies
the implementation of the physical model. The RTM
model has been in disfavor because many feel it does
not account for basilar membrane tuning. This criticism
is largely due to the experimental results of physiologists
who have measured the BM–ear canal transfer function,
and found the tuning of BM velocity to be similar to
neural threshold response data. Much of the experimen-
tal BM data, however, are not convincing on this point,
with the BM slope S2 (Fig. 3.4b) generally being much
smaller than that of neural responses [3.95]. The ques-
tion of whether an active model is required to simulate
measured BM responses is still being debated.

Better estimates of the amplitude of cilia bundle
displacement at a given sound pressure level directly ad-
dress the sensitivity questions. If the estimate of Russell
of 30 mV/degree is correct [3.123], then the cochlear
sensitivity question may be resolved by having very
sensitive detectors. Also, better estimates are needed

of the ratio of the BM frequency response to the IHC
frequency response, both at high and low frequencies.
Rhode’s approach of using the slopes of Fig. 3.4b rather
than traditional ad hoc bandwidth measures, is a useful
tool in this regard. The bandwidth 10 dB down rela-
tive to the peak has been popular, but arbitrary and thus
poor, criterion in cochlear research. A second, some-
what better, bandwidth measure is Fletcher’s equivalent
rectangular bandwidth discussed in Allen [3.10].

Summary. This section has reviewed what we know
about the cochlea. The Basics section reviews the na-
ture of modeling and briefly describes the anatomy of
the inner ear, and the function of inner and outer hair
cells. In Sect. 3.1.2 we reviewed the history of cochlear
modeling. The Wegel and Lane paper was a key paper
that introduced the first detailed view of masking, and
in the same paper introduced the first modern cochlear
model Fig. 3.2b. We presented the basic tools of cochlear
modeling, impedance, and introduced the transmission
matrix method (two-port analysis). We describe how
these models work in intuitive terms, including how the
basilar membrane may be treated as having a frequency
dependent acoustic hole. The location of the hole, as
a function of frequency, is called the cochlear map. This
hole keeps fluid from flowing beyond a certain point,
producing the cochlear traveling wave.

We reviewed and summarized the NL measures of
cochlear response. Since these data are not fully under-
stood, and have not been adequately modeled, this is
the most difficult section. However it is worth the effort
to understand these extensive data and to appreciate the
various relations between them, such as the close paral-
lel between two-tone suppression and the upward spread
of masking, and between loudness recruitment and outer
hair cell damage.

We review several models of the hair cell, including
forward and reverse transduction. Some of this mater-
ial is recently published, and the view of these models
could easily change over the next few years as we better
understand reverse transduction.

Finally in Sect. 3.2.3 we reviewed the basics of
micromechanics. We have presented the two basic types
of models, passive and active models, with a critical
review of each.

3.3 Neural Masking

When modeling human psychophysics one must care-
fully distinguish the external physical variables, which

we call Φ variables, from the internal psychophysical
variables, or Ψ variables. It may be helpful to note that
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Φ and Ψ sound similar to the initial syllable of the words
physical and psychological, respectively [3.124]. Psy-
chophysical modeling seeks a transformation from the
Φ domain to the Ψ domain. The Φ intensity of a sound is
easily quantified by direct measurement. The Ψ intensity
is the loudness. The idea that loudness could be quan-
tified was first suggested by Fechner [3.125] in 1860,
who raised the question of the quantitative transforma-
tion between the physical and psychophysical intensity.
For a recent review of this problem, and a brief sum-
mary of its long history, see Schlauch et al. [3.126]. This
section is based on an earlier report by Allen [3.79], and
Allen and Neely [3.127].

An increment in the intensity of a sound that results
in a just noticeable difference is called an intensity JND.
Fechner suggested quantifying the intensity-loudness
growth transformation by counting the number of the
loudness JNDs between two intensity values. However,
after many years of work, the details of the relation-
ship between loudness and the intensity JNDs remain
unclear [3.128–130].

The contribution of Allen and Neely [3.127] and
Allen [3.79] is that it takes a new view of the prob-
lem of the intensity JND and loudness by merging
the 1953 Fletcher neural excitation pattern model of
loudness [3.10, 131] with auditory signal detection the-
ory [3.132].

It is generally accepted that the intensity JND is
the physical correlate of the psychological-domain un-
certainty corresponding to the psychological intensity
representation of a signal. Along these lines, for long
duration pure tones and wide-band noise, we assume
that the Ψ -domain intensity is the loudness, and that
the loudness JND results from loudness noise due to its
stochastic representation.

To model the intensity JND we must define a deci-
sion variable associated with loudness and its random
fluctuations. We call this loudness random decision vari-
able the single-trial loudness. Accordingly we define
the loudness and the loudness JND in terms of the
first and second moments of the single-trial loudness,
that is the mean and variance of the distribution of the
single-trial loudness decision variable. We also define
the ratio of the mean loudness to the loudness stan-
dard deviation as the loudness signal-to-noise ratio,
SNRL.

Our ultimate goal in this work is to use signal detec-
tion theory to unify masking and the JND, following
the 1947 outline of this problem by Miller [3.133].
Tonal data follows the near miss to Weber’s law
(thus does not obey Weber’s law), while the wide-

band noise data does obey Weber’s law. We will
show that the transformation of the Φ-domain (in-
tensity) JND data (both tone and noise) into the Ψ

domain (loudness) unifies these two types of JND
data, since SNRL(L) is the same for both the tone
and noise cases. To help understand these results,
we introduce the concept of a near miss to Stevens’
law, which we show cancels the near–miss to We-
ber’s law, giving the invariance in SNRL for the tone
case [3.127]. This work has applications in speech and
audio coding.

For the case of tones, we have chosen to illus-
trate our theoretical work using the classical intensity
modulation measurements of Riesz [3.75] who meas-
ured the intensity JND using small, low-frequency
(3 Hz), sinusoidal modulation of tones. Modern methods
generally use pulsed tones which are turned on and
off somewhat abruptly, to make them suitable for
a two-alternative, forced-choice (2AFC) paradigm.
This transient could trigger cochlear forward masking.
Riesz’s modulation method has a distinct advan-
tage for characterizing the internal signal detection
process, because it maintains a nearly steady-state
small-signal condition within the auditory system,
minimizing any cochlear forward masking compo-
nent. The interpretation of intensity JNDs is therefore
simplified since underlying stochastic processes are
stationary.

An outline of this neural masking section is as fol-
lows. After some basic definitions in Sect. 3.3.1 and
a review of historical models (e.g., Weber and Fech-
ner), in Sect. 3.3.2, we explore issues surrounding the
relation between the intensity JND and loudness, for
the special case of tones in quiet and for wide-band
noise. First, we look at formulae for counting the num-
ber of intensity and loudness JNDs and we use these
formulae, together with decision-theoretic principles,
to relate loudness to the intensity JND. We then re-
view the loudness-JND theory developed by Hellman
and Hellman [3.134], which provided the inspiration
for the present work. Next, we empirically estimate the
loudness SNR, defined as the mean loudness over the
loudness variance, and proportional to L/∆L , as a func-
tion of both intensity and loudness, using the tonal JND
data of Riesz [3.75] and the loudness growth function of
Fletcher and Munson [3.41]. We then repeat this calcu-
lation for Miller’s wide-band noise JND and loudness
data. Finally we propose a model of loudness that may be
used to compute the JND. This model merges Fletcher’s
neural excitation pattern model of loudness with signal
detection theory.
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3.3.1 Basic Definitions

We need a flexible yet clear notation that accounts for
important time fluctuations and modulations that are
present in the signals, such as beats and gated signals.
We include a definition of masked threshold because we
view the intensity JND as a special case of the masked
threshold [3.133]. We include a definition of beats so
that we can discuss their influence on Riesz’s method
for the measurement of intensity JNDs.

Intensity. In the time domain, it is common to define
the Φ intensity in terms of the time-integrated squared
signal pressure s(t), namely,

Is(t) ≡ 1


cT

t∫
t−T

s2(t)dt , (3.16)

where T is the integration time and 
c is the specific
acoustic impedance of air. The intensity level is defined
as Is/Iref , and the sound pressure level as |s|/sref , where
the reference intensity is Iref or 10−10 µW/cm2 and the
reference pressure sref = 20 µPa. These two reference
levels are equivalent at only one temperature, but both
seem to be in use. Equivalence of the pressure and in-
tensity references requires that 
c = 40 cgs Rayls. At
standard atmospheric pressure, this is only true when
the temperature is about 39 ◦C. Such levels are typically
expressed in dB units.

Intensity of Masker plus Probe. The JND is sometimes
called self-masking, to reflect the view that it is deter-
mined by the internal noise of the auditory system. To
model the JND it is useful to define a more-general meas-
ure called the masked threshold, which is defined in the
Φ domain in terms of a nonnegative pressure scale fac-
tor α applied to the probe signal p(t) that is then added to
the masking pressure signal m(t). The relative intensity
of the probe and masker is varied by changing α. Setting
s(t) = m(t)+αp(t), we denote the combined intensity
as

Im+p(t, α) ≡ 1


cT

t∫
t−T

[m(t)+αp(t)]2 dt . (3.17)

The unscaled probe signal p(t) is chosen to have the
same long-term average intensity as the masker m(t),
defined as I . Let Im(t) be the intensity of the masker with
no probe (α = 0), and Ip(t, α) = α2 I be the intensity of
the scaled probe signal with no masker. Thus

I ≡ Im+p(t, 0) = Im(t) = Ip(t, 1) .

Because of small fluctuations in Im and Ip due to the
finite integration time T , this equality cannot be ex-
actly true. We are specifically ignoring these small
rapid fluctuations – when these rapid fluctuations are
important, our conclusions and model results must be
reformulated.

Beats. Rapid fluctuations having frequency components
outside the bandwidth of the period Ts rectangular
integration window are very small and will be ig-
nored (T is assumed to be large). Accordingly we
drop the time dependence in terms Im and Ip. The
beats between m(t) and p(t) of these signals are
within a common critical band. Slowly varying corre-
lations, between the probe and masker having frequency
components within the bandwidth of the integration
window, may not be ignored, as with beats between
two tones separated in frequency by a few Hz. Ac-
cordingly we keep the time dependence in the term
Im+p(t, α) and other slow–beating time dependent terms.
In the Φ domain these beats are accounted for as
a probe–masker correlation function ρmt(t) [3.132,
p. 213].

Intensity Increment δI(t‚α). Expanding (3.17) and solv-
ing for the intensity increment δI we find

δI(t, α) ≡ Im+p(t, α)− I = [
2αρmp(t)+α2]I ,

(3.18)

where

ρmp(t) = 1


cTI

t∫
t−T

m(t)p(t)dt (3.19)

defines a normalized cross-correlation function between
the masker and the probe. The correlation function must
lie between −1 and 1.

Detection Threshold. As the probe-to-masker ratio α is
increased from zero, the probe can eventually be de-
tected. We specify the probe detection threshold as α∗,
where the asterisk indicates the threshold value of α

where a subject can discriminate intensity Im+p(t, α∗)
from intensity Im+p(t, 0) 50% of the time, corrected for
chance (i. e., obtain a 75% correct score in a direct com-
parison of the two signals [3.132, p. 129]). The quantity
α∗(t, I) is the probe to masker root-mean-square (RMS)
pressure ratio at the detection threshold. It is a function
of the masker intensity I and, depending on the exper-
imental setup, time. α∗ summarizes the experimental
measurements.

Part
A

3
.3



22 Part A PARTMARK

Masked Threshold Intensity. When ρmp = 0, the
masked threshold intensity is defined in terms of α∗ as

I∗
p (I) ≡ Ip(α∗) = α2∗ I ,

which is the threshold intensity of the probe in the
presence of the masker.

The masked threshold intensity is a function of
the stimulus modulation parameters. For example, tone
maskers and narrow-band noise maskers of equal inten-
sity, and therefore approximately equal loudness, give
masked thresholds that are about 20 dB different [3.135].
As a second example, when using the method of
beats [3.75], the just–detectable modulation depends on
the beat frequency. With modern 2AFC methods, the
signals are usually gated on and off (100% modula-
tion) [3.136]. According to Stevens and Davis [3.137,
p. 142]

A gradual transition, such as the sinusoidal variation
used by Riesz, is less easy to detect than an abrupt
transition; but, as already suggested, an abrupt
transition may involve the production of unwanted
transients.

One must conclude that the relative masked threshold
[i. e., α∗(t, I)] is a function of the modulation conditions,
and depends on ρmp, and therefore T .

Ψ-Domain Temporal Resolution. When modeling
time-varying psychological decision variables, the rel-
evant integration time T is not the duration defined by
the Φ intensity (3.16), rather the integration time is de-
termined in the Ψ domain. This important Ψ -domain
model parameter is called loudness temporal integra-
tion [3.138]. It was first explicitly modeled by Munson
in 1947 [3.139].

The Φ-domain temporal resolution (T ) is critical to
the definition of the JND in Riesz’s experiment because
it determines the measured intensity of the beats. The Ψ -
domain temporal resolution plays a different role. Beats
cannot be heard if they are faster than, and therefore fil-
tered out by, the Ψ domain response. The Ψ -domain
temporal resolution also impacts results for gated stim-
uli, such as in the 2AFC experiment, though its role is
poorly understood in this case. To model the JND as
measured by Riesz’s method of just-detectable beats,
one must know the Ψ -domain resolution duration to
calculate the probe–masker effective correlation ρmp(t)
in the Ψ domain. It may be more practical to estimate
the Ψ domain resolution from experiments that esti-
mate the degree of correlation, as determined by the

beat modulation detection threshold as a function of the
beat frequency fb.

In summary, even though Riesz’s modulation detec-
tion experiment is technically a masking task, we treat it,
following Riesz [3.75], Miller [3.133], and Littler [3.16],
as characterizing the intensity JND. It follows that the Ψ -
domain temporal resolution plays a key role in intensity
JND and masking models.

The Intensity JND ∆I. The intensity just-noticeable dif-
ference (JND) is

∆I(I) ≡ δ(t, α∗) , (3.20)

the intensity increment at the masked threshold, for
the special case where the probe signal is equal to the
masking signal (p(t) = m(t)). From (3.18) with α set to
threshold α∗ and ρmp(t) = 1

∆I(I) = (2α∗ +α2∗)I . (3.21)

It is traditional to define the intensity JND to be a func-
tion of I , rather than a function of α(I), as we have done
here. We shall treat both notations as equivalent [i. e.,
∆I(I) or ∆I(α)].

An important alternative definition for the special
case of the pure-tone JND is to let the masker be a pure
tone, and let the probe be a pure tone of a slightly dif-
ferent frequency (e.g., a beat frequency difference of
fb = 3 Hz). This was the definition used by Riesz [3.75].
Beats are heard at fb = 3 Hz, and assuming the period of
3 Hz is within the passband of the Ψ temporal resolution
window, ρmp(t) = sin (2π fbt). Thus

∆I(t, I) = [
2α∗ sin (2π fbt)+α2∗

]
I . (3.22)

If the beat period is less than the Ψ temporal resolu-
tion window, the beats are filtered out by the auditory
brain (the effective ρmn is small) and we do not hear the
beats. In this case ∆I(I) = α2∗ I . This model needs to be
tested [3.139].

Internal Noise. It is widely accepted that the pure-tone
intensity JND is determined by the internal noise of
the auditory system [3.140, 141], and that ∆I is pro-
portional to the standard deviation of the Ψ -domain
decision variable that is being discriminated in the in-
tensity detection task, reflected back into the Φ domain.
The usual assumption, from signal detection theory, is
that ∆I = d′σI, where d′ is defined as the proportion-
ality between the change in intensity and the variance
d′ ≡ ∆I/σI. Threshold is typically when d′ = 1 but can
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depend on the the experimental design; and σI is the in-
tensity standard deviation of the Φ-domain intensity due
to Ψ -domain auditory noise [3.15, 17, 127].

Hearing Threshold. The hearing threshold (or un-
masked threshold) intensity may be defined as the
intensity corresponding to the first (lowest intensity)
JND. The hearing threshold is represented as I∗

p (0) to
indicate the probe intensity when the masker intensity
is small (i. e., I → 0). It is believed that internal noise is
responsible for the hearing threshold.

Loudness L. The loudness L of a sound is the Ψ in-
tensity. The loudness growth function L(I) depends on
the stimulus conditions. For example L(I) for a tone
and for wide-band noise are not the same functions.
Likewise the loudness growth function for a 100 ms
tone and a 1 s tone differ. When defining a loudness
scale it is traditional to specify the intensity, frequency,
and duration of a tone such that the loudness growth
function is one [L(Iref, fref, Tref ) = 1 defines a loud-
ness scale]. For the sone scale, the reference signal is
a Iref = 40 dB−SPL tone at fref = 1 kHz with dura-
tion Tref = 1 s. For Fletcher’s LU scale the reference
intensity is the hearing threshold, which means that
1 sone = 975 LU [3.43] for a normal hearing person.
Fletcher’s LU loudness scale seems a more-natural scale
than the sone scale used in the American National Stan-
dards Institute (ANSI) and International Organization
for Standardization (ISO) standards.

The Single–Trial Loudness. A fundamental postulate
of psychophysics is that all decision variables (i. e., Ψ

variables) are random variables, drawn from some prob-
ability space [3.132, Chap. 5]. For early discussions of
this point see Montgomery [3.142] and p. 144 of Stevens
and Davis [3.137]. To clearly indicate the distinction be-
tween random and nonrandom variables, a tilde (∼) is
used to indicate a random variable. As a mnemonic,
we can think of the ∼ as a wiggle associated with
randomness.

We define the loudness decision variable as the
single-trial loudness L̃ , which is the sample loudness
heard on each stimulus presentation. The loudness L is
then the expected value of the single-trial loudness L̃

L(I) ≡ E L̃(I) . (3.23)

The second moment of the single-trial loudness

σ2
L ≡ E(L̃ − L)2 (3.24)

defines the loudness variance σ2
L and standard deviation

σL.

Derived Definitions
The definitions given above cover the basic variables.
However many alternative forms (various normaliza-
tions) of these variables are used in the literature. These
derived variables were frequently formed with the hope
of finding an invariance in the data. This could be viewed
as a form of modeling exercise that has largely failed
(e.g., the near miss to Weber’s law), and the shear num-
ber of combinations has led to serious confusions [3.138,
p. 152]. Each normalized variable is usually expressed
in dB, adding an additional unnecessary layer of con-
fusion to the picture. For example, masking is defined
as the masked threshold normalized by the unmasked
(quiet) threshold, namely

M ≡ I∗
p (Im)

I∗
p (0)

.

It is typically quoted in dB re sensation level (dB−SL).
The intensity JND is frequently expressed as a relative
JND called the Weber fraction defined by

J(I) ≡ ∆I(I)

I
. (3.25)

From the signal detection theory premise that
∆I = d′σI [3.17], J is just the reciprocal of an effective
signal-to-noise ratio defined as

SNRI(I) ≡ I

σI(I)
(3.26)

since

J = d′ σI

I
= d′

SNRI
. (3.27)

One conceptual difficulty with the Weber fraction J
is that it is an effective signal-to-noise ratio, expressed
in the Φ (physical) domain, but determined by a Ψ

(psychophysical) domain mechanism (internal noise),
as may be seen from Fig. 3.11.

Loudness JND ∆L. Any suprathreshold Ψ -domain incre-
ments may be quantified by corresponding Φ domain
increments. The loudness JND ∆L(I) is defined as the
change in loudness L(I) corresponding to the intensity
JND ∆I(I). While it is not possible to measure ∆L
directly, we assume that we may expand the loudness
function in a Taylor series (Fig. 3.11), giving

L(I +∆I) = L(I)+ ∆I
dL

dI

∣∣∣∣
I
+HOT ,

where HOT represents higher-order terms, which we
shall ignore. If we solve for

∆L ≡ L(I +∆I)− L(I) (3.28)
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Fig. 3.11 Summary of all historical ideas about psy-
chophysics and the relations between the Φ and Ψ variables.
Along the abscissa we have the physical variable, intensity,
and along the ordinate, the psychological variable loud-
ness. The curve represents the loudness, on a log-intensity
log-loudness set of scales. A JND in loudness is shown as
∆L and it depends on loudness, as described by the Poisson
internal noise (PIN) model shown in the box on the left.
Fechner assumed that ∆L was constant, which we now
know to be incorrect. The loudness JND is reflected back
into the physical domain as an intensity JND ∆I , which
also depends on level. Weber’s law, is therefore not true
in general (but is approximately true for wide-band noise).
Our analysis shows that the loudness SNR and the intensity
SNR must be related by the slope of the loudness growth
function, as given by (3.32). These relations are verified in
Fig. 3.12, as discussed in detail in Allen and Neely [3.127]

we find

∆L = ∆I
dL

dI

∣∣∣∣
I

. (3.29)

We call this expression the small-JND approximation.
The above shows that the loudness JND ∆L(I) is related
to the intensity JND ∆I(I) by the slope of the loudness
function, evaluated at intensity I . According to the signal
detection model, the standard deviation of the single-trial
loudness is proportional to the loudness JND, namely

∆L = d′σL . (3.30)

A more explicit way of expressing this assumption is

∆L

∆I
= σL

σI
, (3.31)

where d′ in both the Φ and Ψ domains is the same and
thus cancels.

Loudness SNR. In a manner analogous to the Φ-do-
main SNRI, we define the Ψ -domain loudness SNR as
SNRL(L) ≡ L/σL(L). Given (3.30), it follows that

SNRI = νSNRL , (3.32)

where ν is the slope of the log-loudness function with
respect to log-intensity. If we express the loudness as
a power law

L(I) = Iν

and let x = log(I) and y = log(L), then y = νx. If the
change of ν with respect to dB−SPL is small, then
dy/dx ≈ ∆y/∆x ≈ ν. Since d log(y) = dy/y we get

∆L

L
= ν

∆I

I
. (3.33)

Equation (3.32) is important because

1. it tells us how to relate the SNRs between the Φ and
Ψ domains,

2. every term is dimensionless,
3. the equation is simple, since ν = 1/3 is approxi-

mately constant above 40 dB−SL (i. e., Stevens’
law), and because

4. we are used to seeing and thinking of loudness, in-
tensity, and the SNR, on log scales, and ν as the slope
on log–log scales.

Counting JNDs. While the concept of counting JNDs
has been frequently discussed in the literature, starting
with Fechner, unfortunately the actual counting formula
(i. e., the equation) is rarely provided. As a result of a lit-
erature search, we found the formula in Nutting [3.143],
Fletcher [3.21], Wegel and Lane [3.20], Riesz [3.75],
Fletcher [3.144], and Miller [3.133].

To derive the JND counting formula, (3.29) is rewrit-
ten as

dI

∆I
= dL

∆L
. (3.34)

Integrating over an interval gives the total number of
intensity JNDs

N12 ≡
I2∫

I1

dI

∆I
=

L2∫
L1

dL

∆L
, (3.35)

where L1 = L(I1) and L2 = L(I2). Each integral counts
the total number of JNDs in a different way between I1
and I2 [3.75,144]. The number of JNDs must be the same
regardless of the domain (i. e., the abscissa variable), Φ

or Ψ .
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3.3.2 Empirical Models

This section reviews some earlier empirical models of
the JND and its relation to loudness relevant to our
development.

Weber’s Law
In 1846 it was suggested by Weber that J(I) is indepen-
dent of I . According to (3.21) and (3.25)

J(I) = 2α∗ +α2∗ .

If J is constant, then α∗ must be constant, which
we denote by α∗(� I) (we strike out I to indicate that
α∗ is not a function of intensity). This expectation,
which is called Weber’s law [3.145], has been success-
fully applied to many human perceptions. We refer the
reader to the helpful and detailed review of these ques-
tions by Viemeister [3.129], Johnson et al. [3.146], and
Moore [3.147].

Somewhat frustrating is the empirical observation
that J(I) is not constant for the most elementary case of
a pure tone [3.75, 136]. This observation is referred to
as the near miss to Weber’s law [3.148].

Weber’s law does make one simple prediction that is
potentially important. From (3.35) along with Weber’s
law J0 ≡ J(� I) we see that the formula for the number
of JNDs is

N12 =
I2∫

I1

dI

J0 I
= 1

J0
ln

(
I2

I1

)
. (3.36)

It remains unexplained why Weber’s law holds as
well as it does [3.149, 150, p. 721] (it holds approxi-
mately for the case of wide band noise), or even why
it holds at all. Given the complex and NL nature of the
transformation between the Φ and Ψ domains, coupled
with the belief that the noise source is in the Ψ domain,
it seems unreasonable that a law as simple as Weber’s
law could hold in any general way. A transformation of
the JND from the Φ domain to the Ψ domain greatly
clarifies the situation.

Fechner’s Postulate
In 1860 Fechner postulated that the loudness JND ∆L(I)
is a constant [3.125,130,151,152]. We are only consid-
ering the auditory case of Fechner’s more general theory.
We shall indicate such a constancy with respect to I as
∆L(� I) (as before, we strike out the I to indicate that
∆L is not a function of intensity). As first reported by
Stevens [3.153], we shall show that Fechner’s postulate
is not generally true.

The Weber–Fechner Law
It is frequently stated [3.152] that Fechner’s postulate
(∆L(� I)) and Weber’s law (J0 ≡ J(� I)) lead to the con-
clusion that the difference in loudness between any two
intensities I1 and I2 is proportional to the logarithm of
the ratio of the two intensities, namely

L(I2)− L(I1)

∆L
= 1

J0
log

(
I2

I1

)
. (3.37)

This is easily seen by eliminating N12 from (3.36)
and by assuming Weber’s law and Fechner’s hypoth-
esis. This result is called Fechner’s law (also called
the Weber–Fechner law). It is not true because of the
faulty assumptions, Weber’s law and Fechner’s postu-
late.

3.3.3 Models of the JND

Starting in 1923, Fletcher and Steinberg studied loud-
ness coding of pure tones, noise, and speech [3.21,
154–156], and proposed that loudness was related to
neural spike count [3.41], and even provided detailed
estimates of the relation between the number of spikes
and the loudness in sones [3.43, p. 271]. In 1943 De
Vries first introduced a photon-counting Poisson pro-
cess model as a theoretical basis for the threshold
of vision [3.157]. Siebert [3.140] proposed that Pois-
son point-process noise, resulting from the neural rate
code, acts as the internal noise that limits the fre-
quency JND [3.136, 150]. A few years later [3.158],
and independently [3.159] McGill and Goldberg [3.160]
proposed that the Poisson internal noise (PIN) model
might account for the intensity JND, but they did not
find this to produce a reasonable loudness growth func-
tion. Hellman and Hellman [3.134] further refined the
argument that Poisson noise may be used to relate the
loudness growth to the intensity JND, and they found
good agreement between the JND and realistic loudness
functions.

Given Poisson noise, the variance is equal to the
mean, thus

∆L(L) ∝ √
L . (3.38)

This may also be rewritten as σ2
L ∝ L . We would expect

this to hold if the assumptions of McGill [3.148] (i. e.,
the PIN model) are valid.
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Fig. 3.12a–d In 1947 Miller measured the JNDI and the loudness level for two subjects using wide-band modulated
noise (0.15–7 kHz) for levels between 3 and 100 dB−SL. The noise (dashed line) and pure tone (solid line) loudness
are shown in (a). The similarity between ∆L/L derived from the loudness curves for pure tones and for noise provide an
almost perfect fit to the SPIN model which results from assuming the noise is neural point-process noise. See the text for
a summary of these results. The direct derivation of ∆L based on pure tone JND and loudness data from Miller [3.133],
Riesz [3.75], Fletcher and Munson [3.41].

In the following we directly compare the loudness–
growth function of Fletcher and Munson to the number
of JNDs N12 from Riesz [3.75, 127] to estimate ∆L/L .

3.3.4 A Direct Estimate of the Loudness JND

Given its importance, it is important to estimate ∆L
directly from its definition (3.28), using Riesz’s ∆I(I)
and Fletcher and Munson’s 1933 estimate of L(I).

Miller’s 1947 famous JND paper includes wide-
band-noise loudness-level results. We transformed these
JND data to loudness using Fletcher and Munson [3.41]
reference curve (i. e., Fig. 3.12a).

Loudness Growth, Recruitment, and the OHC
In 1924 Fletcher and Steinberg published an important
paper on the measurement of the loudness of speech sig-
nals [3.155]. In this paper, when describing the growth
of loudness, the authors state

the use of the above formula involved a summation
of the cube root of the energy rather than the energy.

This cube–root dependence had first been described by
Fletcher the year before [3.21].

In 1930 Fletcher [3.27] postulated that there was
a monotonic relationship between central nerve firings
rates and loudness. Given a tonal stimulus at the ear
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Fig. 3.13a–d Test of the SPIN model against the classic results of Riesz [3.75], Jesteadt et al. [3.136]. Test of the model
derived on the left based on a comparison between loudness data and intensity JND data at 1 kHz, using the SPIN model

drum, Stevens’ law says that the loudness is given by

L ≡ L( f, x, I) ∝ Iν , (3.39)

where ( f, x, I) are the frequency, place, and intensity of
the tone, respectively. The exponent ν has been experi-
mentally established to be in the range between 1/4 and
1/3 for long duration pure tones at 1 kHz. Fletcher and
Munson [3.41] found ν ≈ 1/4 at high intensities and ap-
proximately 1 near threshold. Although apparently it has
not been adequately documented, ν seems to be close to
1 for the recruiting ear [3.15].

Recruitment. What is the source of Fletcher’s cube-
root loudness growth (i. e., Stevens’ law)? Today
we know that cochlear outer hair cells are the
source of the cube-root loudness growth observed by
Fletcher.

From noise trauma experiments on animals and hu-
mans, we may conclude that recruitment (abnormal
loudness growth) occurs in the cochlea [3.3, 94]. Stein-
berg and Gardner described such a loss as a variable
loss (i. e., sensory neural loss) and partial recruitment as
a mixed loss (i. e., having a conductive component) [3.3,
161]. They and Fowler verified the conductive compo-
nent by estimating the air–bone gap. In a comment to
Fowler’s original presentation on loudness recruitment
in 1937, the famous anatomist Lorente de Nó theorized
that recruitment is due to hair cell damage [3.14]. Stein-
berg and Gardner clearly understood recruitment, as is
indicated in the following quote [3.3, p. 20]

Owing to the expanding action of this type of loss
it would be necessary to introduce a corresponding
compression in the amplifier in order to produce the
same amplification at all levels.
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This compression/loss model of hearing and hear-
ing loss, along with the loudness models of Fletcher
and Munson [3.41], are basic to an eventual quantita-
tive understanding of NL cochlear signal processing and
the cochlea’s role in detection, masking and loudness in
normal and impaired ears. The work by Fletcher [3.162]
and Steinberg and Gardner [3.3], and work on modeling
hearing loss and recruitment [3.122] support this view.

In summary, many studies conclude that the cube-
root loudness growth starts with the NL compression
of basilar membrane motion due to stimulus-dependent
voltage changes within the OHC.

3.3.5 Determination of the Loudness SNR

In Fig. 3.12 we show a summary of L(I), ν(I), J(I) and
∆L/L = d′/SNRL for the tone and noise data.

The pure-tone and wide-band noise JND results may
be summarized in terms of the loudness SNRL(L) data
shown in Fig. 3.12d where we show ∆L/L = d′/SNRL,
as a function of loudness.

For noise below 55 dB−SL the loudness signal-to-
noise ratio SNRL ≡ L/σL decreases as the square root
of the loudness.

In the lower-right panel (Fig. 3.12d) we provide
a functional summary of ∆L/L for both tones and noise
with the light solid line described by

∆L(L)

L
= h [min(L, L0)]−1/2 , (3.40)

where h = √
2 and L0 = 5000 LU (≈ 5 sone). We call

this relation the saturated Poisson internal noise (SPIN)
model. With these parameter values, (3.40) appears to
be a lower bound on the relative loudness JNDL for both
tones and noise.

In Fig. 3.12b the second top panel shows the ex-
ponent ν(I) for both Fletcher and Munson’s and
Miller’s loudness growth function. In the lower-left
panel (Fig. 3.12c) we see ∆I/I versus I for Miller’s
subjects, Miller’s equation, and Riesz’s JND equation.
In the bottom panel (Fig. 3.12d) we show ∆L/L ver-
sus L for the noise and tones cases. From (3.33)
∆L/L = ν(I)J(I). Note how the product of ν(I) and
J(I) is close to a constant for tones above 5000 LU.

Near miss to Stevens’ Law
For tones the intensity exponent ν(I) varies systemati-
cally between 0.3 and 0.4 above 50 dB−SL, as shown
by the solid line in the upper-right panel of Fig. 3.12b.
We have highlighted this change in the power law with
intensity for a 1 kHz tone in the upper-right panel with

a light solid straight line. It is logical to call this effect
the near miss to Stevens’ law, since it cancels the near
miss to Weber’s law, giving a constant relative loudness
JND ∆L/L for tones.

Figure 3.13a shows the Fletcher–Munson loudness
data from Table III in [3.41]. The upper-right panel
(Fig. 3.13b) is the slope of the loudness with respect to
intensity (LU cm2/W). In the lower-left (Fig. 3.13c) we
show the relation between the SPIN model ((3.43) with
h = 2.4) relative JND (solid line), calculated from the
Fletcher–Munson loudness data, and the measured rela-
tive JND obtained by Riesz [3.75] at 1 kHz. We display
both Riesz’s formula (dashed line) and Riesz’s raw data
(circles), which may be found in Fletcher [3.43, 163].
In the lower–right (Fig. 3.13d) we compare the SPIN
model relative JND (3.43) (with h = 3.0), and the rel-
ative JND computed from the Jesteadt et al. [3.136]
formula (dashed line) and data from their Table B-I (cir-
cles). They measured the JND using pulsed tones for
levels between 5 and 80 dB.

3.3.6 Weber–Fraction Formula

In this section we derive the relation between the Weber
fraction J(I) given the loudness L(I) starting from the
small-JND approximation

∆L = ∆IL ′(I) , (3.41)

where L ′(I) ≡ dL/dI . If we solve this equation for ∆I
and divide by I we find

J(I) ≡ ∆I

I
= ∆L

IL ′(I)
. (3.42)

Finally we substitute the SPIN model (3.40)

J(I) = hL(I)

IL ′(I)
[min(L(I), L0)]−1/2 . (3.43)

This formula is the same as that derived by Hell-
man and Hellman [3.134], when L ≤ L0. In Fig. 3.13c
we plot (3.43) labeled SPIN-model with h = 2.4 and
L0 = 10 000 LU. For levels between 0 and 100 dB−SL,
the SPIN model (dashed curve) fit to Riesz’s data and
Riesz’s formula is excellent. Over this 100 dB range the
curve defined by the loudness function fits as well as the
curve defined by Riesz’s formula [3.127]. The excellent
fit gives us further confidence in the basic assumptions
of the model.

In the lower-right panel (Fig. 3.13d) we have su-
perimposed the JND data of Jesteadt et al. [3.136]
with h = 3 and L0 = 10 000 LU for comparison with
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(3.43). The Jesteadt et al. data were taken with gated
stimuli (100% modulation) and 2AFC methods. It is
expected that the experimental method would lead to
a different value of h than the valued required for
Riesz’s data set. The discrepancy between 0 and 20 dB

may be due to the 100% modulation for these stim-
uli. The fit from 20 to 80 dB−SL is less than a 5%
maximum error, and much less in terms of RMS error.
Note the similarity in slope between the model and the
data.

3.4 Discussion and Summary

Inspired by the Poisson internal noise (PIN)-based
theory of Hellman and Hellman [3.134], we have de-
veloped a theoretical framework that can be used to
explore the relationship between the pure-tone loud-
ness and the intensity JND. The basic idea is to
combine Fletcher’s neural excitation response pattern
model of loudness with signal detection theory. We
defined a random decision variable called the single-
trial loudness. The mean of this random variable is
the loudness, while its standard deviation is propor-
tional to the loudness JND. We define the loudness
signal-to-noise ratio SNRL as the ratio of loudness
(the signal) to standard deviation (a measure of the
noise).

3.4.1 Model Validation

To evaluate the model we have compared the loudness
data of Fletcher and Munson [3.41] with the intensity
JND data of Riesz [3.75], for tones. A similar comparison
was made for noise using loudness and intensity JND
data from Miller [3.133]. We were able to unify the tone
and noise data by two equivalent methods in Fig. 3.12d.
Since the loudness SNR is proportional to the ratio of the
loudness to the JND L/∆L , the SNR is also a piecewise
power-law function which we call the SPIN model. All
the data are in excellent agreement with the SPIN model,
providing support for the validity of this theory.

The above discussion has

• drawn out the fundamental nature of the JND,• shown that the PIN loudness model holds below
5 sone (5000 LU) (the solid line in the lower right
panel of Fig. 3.11 below 5000 LU obeys the PIN
model, and the data for both tones and wide band
noise fall close to this line below 5000 LU) (one sone
is 975 LU [3.127, p. 3631], thus 5000 LU = 5.13 LU.
From the loudness scale this corresponds to a 1 kHz
pure tone at 60 dB−SL),• shown that above 5 sone the PIN model fails and the
loudness SNR remains constant.

3.4.2 The Noise Model

The SPIN Model
Equation (3.40) summarizes our results on the relative
loudness JND for both tones and noise. Using this for-
mula along with (3.32), the JND may be estimated for
tones and noise once the loudness has been determined,
by measurement, or by model. Fechner’s postulate, that
the loudness JND is constant, is not supported by our
analysis, in agreement with Stevens [3.153].

The PIN Model
The success of the PIN model is consistent with the
idea that the pure-tone loudness code is based on neural
discharge rate. This theory should apply between thresh-
old and moderate intensities (e.g., < 60 dB) for frozen
stimuli where the JND is limited by internal noise.

CNS Noise
Above 60 dB−SL we find that the loudness signal-
to-noise ratio saturated (Fig. 3.12d) with a constant
loudness SNR between 30 and 50 for both the tone
and noise conditions, as summarized by Ekman’s
law [3.164]. We conclude that the Hellman and Hellman
theory must be modified to work above 5 sones.

Weber’s Law
It is significant that, while both J(I) and ν(I) vary
with intensity, the product is constant above 60 dB−SL.
Given that J = d′/νSNRL, the saturation in SNRL ex-
plains Weber’s law for wideband signals (since ν and
SNRL for that case are constant) as well as the near miss
to Weber’s law for tones, where ν is not constant (the
near miss to Stevens’ law, Fig. 3.12a).

Generalization to Other Data
If σL(L, � I) depends on L , and is independent of I ,
then the SNRL(L) should not depend on the nature
of the function L(I) (i. e., it should be true for any
L(I)). This prediction is supported by our analysis
summarized by (3.40). It will be interesting to see
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how SNRL depends on L and I for subjects hav-
ing a hearing-loss-induced recruitment, and how well
this theory explains other data in the literature, such
as loudness and JNDs with masking-induced recruit-
ment [3.126].

Conditions for Model Validity
To further test the SPIN model, several conditions must
be met. First the loudness and the JND must have
been measured under the same stimulus conditions. Sec-
ond, the internal noise must be the dominant factor
in determining the JND. This means that the stimuli
must be frozen (or have significant duration and band-
width), and the subjects well trained in the task. As
the signal uncertainty begins to dominate the internal
noise, as it does in the cases of roving the stimu-
lus, the intensity JND will become independent of the
loudness.

As discussed by Stevens and Davis [3.165, pp. 141-
143], JND data are quite sensitive to the modulation
conditions. The Riesz [3.75] and Munson [3.166] data
make an interesting comparison because they are taken
under steady–state conditions and are long duration tonal
signals. Both sets of experimental data (i. e., Riesz and
Munson) were taken in the same laboratory within a few
years of each other. In 1928 Wegel, Riesz, and Munson
were all members of Fletcher’s department. Riesz [3.75]

states that he used the same methods as Wegel and
Lane [3.20], and it is likely that Munson [3.166] did
as well.

Differences in the signal conditions are the most
likely explanation for the differences observed in the
intensity JND measurements of Riesz and Jesteadt
shown in Fig. 3.13d. One difference between the data
of Riesz [3.75] and Jesteadt et al. [3.136] is that Riesz
varied the amplitude of the tones in a sinusoidal man-
ner with a small (i. e., just detectable) modulation index,
while Jesteadt et al. alternated between two intervals of
different amplitude, requiring that the tones be gated on
and off (i. e., a 100% modulation index).

The neural response to transient portions of a stim-
ulus is typically larger than the steady-state response
(e.g., neural overshoot) and, therefore, may dominate
the perception of stimuli with large, abrupt changes in
amplitude. The fact that the intensity JND is sensitive to
the time interval between two tones of different ampli-
tude [3.165] is another indication that neural overshoot
may play a role.

It would be interesting to check the SPIN model
on loudness and JND data taken using gated signals,
given the observed sensitivity to the modulation. While
these JND data are available [3.136], one would need
loudness data taken with identical (or at least similar)
modulations. We are not aware of such data.
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